from typing import Any, List, Sequence, Tuple, Union

from langchain_core._api import deprecated
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.prompts.chat import AIMessagePromptTemplate, ChatPromptTemplate
from langchain_core.runnables import Runnable, RunnablePassthrough
from langchain_core.tools import BaseTool

from langchain.agents.agent import BaseSingleActionAgent
from langchain.agents.format_scratchpad import format_xml
from langchain.agents.output_parsers import XMLAgentOutputParser
from langchain.agents.xml.prompt import agent_instructions
from langchain.callbacks.base import Callbacks
from langchain.chains.llm import LLMChain
from langchain.tools.render import render_text_description


@deprecated("0.1.0", alternative="create_xml_agent", removal="0.2.0")
class XMLAgent(BaseSingleActionAgent):
    """Agent that uses XML tags.

    Args:
        tools: list of tools the agent can choose from
        llm_chain: The LLMChain to call to predict the next action

    Examples:

        .. code-block:: python

            from langchain.agents import XMLAgent
            from langchain

            tools = ...
            model =


    """

    tools: List[BaseTool]
    """List of tools this agent has access to."""
    llm_chain: LLMChain
    """Chain to use to predict action."""

    @property
    def input_keys(self) -> List[str]:
        return ["input"]

    @staticmethod
    def get_default_prompt() -> ChatPromptTemplate:
        base_prompt = ChatPromptTemplate.from_template(agent_instructions)
        return base_prompt + AIMessagePromptTemplate.from_template(
            "{intermediate_steps}"
        )

    @staticmethod
    def get_default_output_parser() -> XMLAgentOutputParser:
        return XMLAgentOutputParser()

    def plan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        log = ""
        for action, observation in intermediate_steps:
            log += (
                f"<tool>{action.tool}</tool><tool_input>{action.tool_input}"
                f"</tool_input><observation>{observation}</observation>"
            )
        tools = ""
        for tool in self.tools:
            tools += f"{tool.name}: {tool.description}\n"
        inputs = {
            "intermediate_steps": log,
            "tools": tools,
            "question": kwargs["input"],
            "stop": ["</tool_input>", "</final_answer>"],
        }
        response = self.llm_chain(inputs, callbacks=callbacks)
        return response[self.llm_chain.output_key]

    async def aplan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        log = ""
        for action, observation in intermediate_steps:
            log += (
                f"<tool>{action.tool}</tool><tool_input>{action.tool_input}"
                f"</tool_input><observation>{observation}</observation>"
            )
        tools = ""
        for tool in self.tools:
            tools += f"{tool.name}: {tool.description}\n"
        inputs = {
            "intermediate_steps": log,
            "tools": tools,
            "question": kwargs["input"],
            "stop": ["</tool_input>", "</final_answer>"],
        }
        response = await self.llm_chain.acall(inputs, callbacks=callbacks)
        return response[self.llm_chain.output_key]


def create_xml_agent(
    llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: BasePromptTemplate
) -> Runnable:
    """Create an agent that uses XML to format its logic.

    Args:
        llm: LLM to use as the agent.
        tools: Tools this agent has access to.
        prompt: The prompt to use, must have input keys
            `tools`: contains descriptions for each tool.
            `agent_scratchpad`: contains previous agent actions and tool outputs.

    Returns:
        A Runnable sequence representing an agent. It takes as input all the same input
        variables as the prompt passed in does. It returns as output either an
        AgentAction or AgentFinish.

    Example:

        .. code-block:: python

            from langchain import hub
            from langchain_community.chat_models import ChatAnthropic
            from langchain.agents import AgentExecutor, create_xml_agent

            prompt = hub.pull("hwchase17/xml-agent-convo")
            model = ChatAnthropic()
            tools = ...

            agent = create_xml_agent(model, tools, prompt)
            agent_executor = AgentExecutor(agent=agent, tools=tools)

            agent_executor.invoke({"input": "hi"})

            # Use with chat history
            from langchain_core.messages import AIMessage, HumanMessage
            agent_executor.invoke(
                {
                    "input": "what's my name?",
                    # Notice that chat_history is a string
                    # since this prompt is aimed at LLMs, not chat models
                    "chat_history": "Human: My name is Bob\\nAI: Hello Bob!",
                }
            )

    Creating prompt example:

        .. code-block:: python

            from langchain_core.prompts import PromptTemplate

            template = '''You are a helpful assistant. Help the user answer any questions.

            You have access to the following tools:

            {tools}

            In order to use a tool, you can use <tool></tool> and <tool_input></tool_input> tags. You will then get back a response in the form <observation></observation>
            For example, if you have a tool called 'search' that could run a google search, in order to search for the weather in SF you would respond:

            <tool>search</tool><tool_input>weather in SF</tool_input>
            <observation>64 degrees</observation>

            When you are done, respond with a final answer between <final_answer></final_answer>. For example:

            <final_answer>The weather in SF is 64 degrees</final_answer>

            Begin!

            Previous Conversation:
            {chat_history}

            Question: {input}
            {agent_scratchpad}'''
            prompt = PromptTemplate.from_template(template)
    """  # noqa: E501
    missing_vars = {"tools", "agent_scratchpad"}.difference(prompt.input_variables)
    if missing_vars:
        raise ValueError(f"Prompt missing required variables: {missing_vars}")

    prompt = prompt.partial(
        tools=render_text_description(list(tools)),
    )
    llm_with_stop = llm.bind(stop=["</tool_input>"])

    agent = (
        RunnablePassthrough.assign(
            agent_scratchpad=lambda x: format_xml(x["intermediate_steps"]),
        )
        | prompt
        | llm_with_stop
        | XMLAgentOutputParser()
    )
    return agent
