"""OpenAI chat wrapper."""
from __future__ import annotations

import logging
import os
import sys
import warnings
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    cast,
)

import openai
import tiktoken
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    FunctionMessage,
    FunctionMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
    ToolMessage,
    ToolMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.runnables import Runnable
from langchain_core.utils import (
    get_from_dict_or_env,
    get_pydantic_field_names,
)
from langchain_core.utils.function_calling import convert_to_openai_function

logger = logging.getLogger(__name__)


def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    """Convert a dictionary to a LangChain message.

    Args:
        _dict: The dictionary.

    Returns:
        The LangChain message.
    """
    role = _dict.get("role")
    if role == "user":
        return HumanMessage(content=_dict.get("content", ""))
    elif role == "assistant":
        # Fix for azure
        # Also OpenAI returns None for tool invocations
        content = _dict.get("content", "") or ""
        additional_kwargs: Dict = {}
        if function_call := _dict.get("function_call"):
            additional_kwargs["function_call"] = dict(function_call)
        if tool_calls := _dict.get("tool_calls"):
            additional_kwargs["tool_calls"] = tool_calls
        return AIMessage(content=content, additional_kwargs=additional_kwargs)
    elif role == "system":
        return SystemMessage(content=_dict.get("content", ""))
    elif role == "function":
        return FunctionMessage(content=_dict.get("content", ""), name=_dict.get("name"))
    elif role == "tool":
        additional_kwargs = {}
        if "name" in _dict:
            additional_kwargs["name"] = _dict["name"]
        return ToolMessage(
            content=_dict.get("content", ""),
            tool_call_id=_dict.get("tool_call_id"),
            additional_kwargs=additional_kwargs,
        )
    else:
        return ChatMessage(content=_dict.get("content", ""), role=role)


def _convert_message_to_dict(message: BaseMessage) -> dict:
    """Convert a LangChain message to a dictionary.

    Args:
        message: The LangChain message.

    Returns:
        The dictionary.
    """
    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
        if "function_call" in message.additional_kwargs:
            message_dict["function_call"] = message.additional_kwargs["function_call"]
            # If function call only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
        if "tool_calls" in message.additional_kwargs:
            message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
            # If tool calls only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, FunctionMessage):
        message_dict = {
            "role": "function",
            "content": message.content,
            "name": message.name,
        }
    elif isinstance(message, ToolMessage):
        message_dict = {
            "role": "tool",
            "content": message.content,
            "tool_call_id": message.tool_call_id,
        }
    else:
        raise TypeError(f"Got unknown type {message}")
    if "name" in message.additional_kwargs:
        message_dict["name"] = message.additional_kwargs["name"]
    return message_dict


def _convert_delta_to_message_chunk(
    _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
    role = cast(str, _dict.get("role"))
    content = cast(str, _dict.get("content") or "")
    additional_kwargs: Dict = {}
    if _dict.get("function_call"):
        function_call = dict(_dict["function_call"])
        if "name" in function_call and function_call["name"] is None:
            function_call["name"] = ""
        additional_kwargs["function_call"] = function_call
    if _dict.get("tool_calls"):
        additional_kwargs["tool_calls"] = _dict["tool_calls"]

    if role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=content)
    elif role == "assistant" or default_class == AIMessageChunk:
        return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
    elif role == "system" or default_class == SystemMessageChunk:
        return SystemMessageChunk(content=content)
    elif role == "function" or default_class == FunctionMessageChunk:
        return FunctionMessageChunk(content=content, name=_dict["name"])
    elif role == "tool" or default_class == ToolMessageChunk:
        return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
    elif role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=content, role=role)
    else:
        return default_class(content=content)  # type: ignore


class ChatOpenAI(BaseChatModel):
    """`OpenAI` Chat large language models API.

    To use, you should have the
    environment variable ``OPENAI_API_KEY`` set with your API key.

    Any parameters that are valid to be passed to the openai.create call can be passed
    in, even if not explicitly saved on this class.

    Example:
        .. code-block:: python

            from langchain_community.chat_models import ChatOpenAI
            openai = ChatOpenAI(model_name="gpt-3.5-turbo")
    """

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"openai_api_key": "OPENAI_API_KEY"}

    @classmethod
    def get_lc_namespace(cls) -> List[str]:
        """Get the namespace of the langchain object."""
        return ["langchain", "chat_models", "openai"]

    @property
    def lc_attributes(self) -> Dict[str, Any]:
        attributes: Dict[str, Any] = {}

        if self.openai_organization:
            attributes["openai_organization"] = self.openai_organization

        if self.openai_api_base:
            attributes["openai_api_base"] = self.openai_api_base

        if self.openai_proxy:
            attributes["openai_proxy"] = self.openai_proxy

        return attributes

    @classmethod
    def is_lc_serializable(cls) -> bool:
        """Return whether this model can be serialized by Langchain."""
        return True

    client: Any = Field(default=None, exclude=True)  #: :meta private:
    async_client: Any = Field(default=None, exclude=True)  #: :meta private:
    model_name: str = Field(default="gpt-3.5-turbo", alias="model")
    """Model name to use."""
    temperature: float = 0.7
    """What sampling temperature to use."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not explicitly specified."""
    # When updating this to use a SecretStr
    # Check for classes that derive from this class (as some of them
    # may assume openai_api_key is a str)
    openai_api_key: Optional[str] = Field(default=None, alias="api_key")
    """Automatically inferred from env var `OPENAI_API_KEY` if not provided."""
    openai_api_base: Optional[str] = Field(default=None, alias="base_url")
    """Base URL path for API requests, leave blank if not using a proxy or service 
        emulator."""
    openai_organization: Optional[str] = Field(default=None, alias="organization")
    """Automatically inferred from env var `OPENAI_ORG_ID` if not provided."""
    # to support explicit proxy for OpenAI
    openai_proxy: Optional[str] = None
    request_timeout: Union[float, Tuple[float, float], Any, None] = Field(
        default=None, alias="timeout"
    )
    """Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or 
        None."""
    max_retries: int = 2
    """Maximum number of retries to make when generating."""
    streaming: bool = False
    """Whether to stream the results or not."""
    n: int = 1
    """Number of chat completions to generate for each prompt."""
    max_tokens: Optional[int] = None
    """Maximum number of tokens to generate."""
    tiktoken_model_name: Optional[str] = None
    """The model name to pass to tiktoken when using this class. 
    Tiktoken is used to count the number of tokens in documents to constrain 
    them to be under a certain limit. By default, when set to None, this will 
    be the same as the embedding model name. However, there are some cases 
    where you may want to use this Embedding class with a model name not 
    supported by tiktoken. This can include when using Azure embeddings or 
    when using one of the many model providers that expose an OpenAI-like 
    API but with different models. In those cases, in order to avoid erroring 
    when tiktoken is called, you can specify a model name to use here."""
    default_headers: Union[Mapping[str, str], None] = None
    default_query: Union[Mapping[str, object], None] = None
    # Configure a custom httpx client. See the
    # [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
    http_client: Union[Any, None] = None
    """Optional httpx.Client."""

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = get_pydantic_field_names(cls)
        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name in extra:
                raise ValueError(f"Found {field_name} supplied twice.")
            if field_name not in all_required_field_names:
                warnings.warn(
                    f"""WARNING! {field_name} is not default parameter.
                    {field_name} was transferred to model_kwargs.
                    Please confirm that {field_name} is what you intended."""
                )
                extra[field_name] = values.pop(field_name)

        invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
        if invalid_model_kwargs:
            raise ValueError(
                f"Parameters {invalid_model_kwargs} should be specified explicitly. "
                f"Instead they were passed in as part of `model_kwargs` parameter."
            )

        values["model_kwargs"] = extra
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        if values["n"] < 1:
            raise ValueError("n must be at least 1.")
        if values["n"] > 1 and values["streaming"]:
            raise ValueError("n must be 1 when streaming.")

        values["openai_api_key"] = get_from_dict_or_env(
            values, "openai_api_key", "OPENAI_API_KEY"
        )
        # Check OPENAI_ORGANIZATION for backwards compatibility.
        values["openai_organization"] = (
            values["openai_organization"]
            or os.getenv("OPENAI_ORG_ID")
            or os.getenv("OPENAI_ORGANIZATION")
        )
        values["openai_api_base"] = values["openai_api_base"] or os.getenv(
            "OPENAI_API_BASE"
        )
        values["openai_proxy"] = get_from_dict_or_env(
            values,
            "openai_proxy",
            "OPENAI_PROXY",
            default="",
        )

        client_params = {
            "api_key": values["openai_api_key"],
            "organization": values["openai_organization"],
            "base_url": values["openai_api_base"],
            "timeout": values["request_timeout"],
            "max_retries": values["max_retries"],
            "default_headers": values["default_headers"],
            "default_query": values["default_query"],
            "http_client": values["http_client"],
        }

        if not values.get("client"):
            values["client"] = openai.OpenAI(**client_params).chat.completions
        if not values.get("async_client"):
            values["async_client"] = openai.AsyncOpenAI(
                **client_params
            ).chat.completions
        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling OpenAI API."""
        params = {
            "model": self.model_name,
            "stream": self.streaming,
            "n": self.n,
            "temperature": self.temperature,
            **self.model_kwargs,
        }
        if self.max_tokens is not None:
            params["max_tokens"] = self.max_tokens
        return params

    def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
        overall_token_usage: dict = {}
        system_fingerprint = None
        for output in llm_outputs:
            if output is None:
                # Happens in streaming
                continue
            token_usage = output["token_usage"]
            if token_usage is not None:
                for k, v in token_usage.items():
                    if k in overall_token_usage:
                        overall_token_usage[k] += v
                    else:
                        overall_token_usage[k] = v
            if system_fingerprint is None:
                system_fingerprint = output.get("system_fingerprint")
        combined = {"token_usage": overall_token_usage, "model_name": self.model_name}
        if system_fingerprint:
            combined["system_fingerprint"] = system_fingerprint
        return combined

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {**params, **kwargs, "stream": True}

        default_chunk_class = AIMessageChunk
        for chunk in self.client.create(messages=message_dicts, **params):
            if not isinstance(chunk, dict):
                chunk = chunk.dict()
            if len(chunk["choices"]) == 0:
                continue
            choice = chunk["choices"][0]
            chunk = _convert_delta_to_message_chunk(
                choice["delta"], default_chunk_class
            )
            generation_info = {}
            if finish_reason := choice.get("finish_reason"):
                generation_info["finish_reason"] = finish_reason
            logprobs = choice.get("logprobs")
            if logprobs:
                generation_info["logprobs"] = logprobs
            default_chunk_class = chunk.__class__
            chunk = ChatGenerationChunk(
                message=chunk, generation_info=generation_info or None
            )
            yield chunk
            if run_manager:
                run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs)

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {
            **params,
            **({"stream": stream} if stream is not None else {}),
            **kwargs,
        }
        response = self.client.create(messages=message_dicts, **params)
        return self._create_chat_result(response)

    def _create_message_dicts(
        self, messages: List[BaseMessage], stop: Optional[List[str]]
    ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
        params = self._default_params
        if stop is not None:
            if "stop" in params:
                raise ValueError("`stop` found in both the input and default params.")
            params["stop"] = stop
        message_dicts = [_convert_message_to_dict(m) for m in messages]
        return message_dicts, params

    def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
        generations = []
        if not isinstance(response, dict):
            response = response.dict()
        for res in response["choices"]:
            message = _convert_dict_to_message(res["message"])
            generation_info = dict(finish_reason=res.get("finish_reason"))
            if "logprobs" in res:
                generation_info["logprobs"] = res["logprobs"]
            gen = ChatGeneration(
                message=message,
                generation_info=generation_info,
            )
            generations.append(gen)
        token_usage = response.get("usage", {})
        llm_output = {
            "token_usage": token_usage,
            "model_name": self.model_name,
            "system_fingerprint": response.get("system_fingerprint", ""),
        }
        return ChatResult(generations=generations, llm_output=llm_output)

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {**params, **kwargs, "stream": True}

        default_chunk_class = AIMessageChunk
        async for chunk in await self.async_client.create(
            messages=message_dicts, **params
        ):
            if not isinstance(chunk, dict):
                chunk = chunk.dict()
            if len(chunk["choices"]) == 0:
                continue
            choice = chunk["choices"][0]
            chunk = _convert_delta_to_message_chunk(
                choice["delta"], default_chunk_class
            )
            generation_info = {}
            if finish_reason := choice.get("finish_reason"):
                generation_info["finish_reason"] = finish_reason
            logprobs = choice.get("logprobs")
            if logprobs:
                generation_info["logprobs"] = logprobs
            default_chunk_class = chunk.__class__
            chunk = ChatGenerationChunk(
                message=chunk, generation_info=generation_info or None
            )
            yield chunk
            if run_manager:
                await run_manager.on_llm_new_token(
                    token=chunk.text, chunk=chunk, logprobs=logprobs
                )

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._astream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return await agenerate_from_stream(stream_iter)

        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {
            **params,
            **({"stream": stream} if stream is not None else {}),
            **kwargs,
        }
        response = await self.async_client.create(messages=message_dicts, **params)
        return self._create_chat_result(response)

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        return {"model_name": self.model_name, **self._default_params}

    def _get_invocation_params(
        self, stop: Optional[List[str]] = None, **kwargs: Any
    ) -> Dict[str, Any]:
        """Get the parameters used to invoke the model."""
        return {
            "model": self.model_name,
            **super()._get_invocation_params(stop=stop),
            **self._default_params,
            **kwargs,
        }

    @property
    def _llm_type(self) -> str:
        """Return type of chat model."""
        return "openai-chat"

    def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]:
        if self.tiktoken_model_name is not None:
            model = self.tiktoken_model_name
        else:
            model = self.model_name
            if model == "gpt-3.5-turbo":
                # gpt-3.5-turbo may change over time.
                # Returning num tokens assuming gpt-3.5-turbo-0301.
                model = "gpt-3.5-turbo-0301"
            elif model == "gpt-4":
                # gpt-4 may change over time.
                # Returning num tokens assuming gpt-4-0314.
                model = "gpt-4-0314"
        # Returns the number of tokens used by a list of messages.
        try:
            encoding = tiktoken.encoding_for_model(model)
        except KeyError:
            logger.warning("Warning: model not found. Using cl100k_base encoding.")
            model = "cl100k_base"
            encoding = tiktoken.get_encoding(model)
        return model, encoding

    def get_token_ids(self, text: str) -> List[int]:
        """Get the tokens present in the text with tiktoken package."""
        # tiktoken NOT supported for Python 3.7 or below
        if sys.version_info[1] <= 7:
            return super().get_token_ids(text)
        _, encoding_model = self._get_encoding_model()
        return encoding_model.encode(text)

    def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
        """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.

        Official documentation: https://github.com/openai/openai-cookbook/blob/
        main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
        if sys.version_info[1] <= 7:
            return super().get_num_tokens_from_messages(messages)
        model, encoding = self._get_encoding_model()
        if model.startswith("gpt-3.5-turbo-0301"):
            # every message follows <im_start>{role/name}\n{content}<im_end>\n
            tokens_per_message = 4
            # if there's a name, the role is omitted
            tokens_per_name = -1
        elif model.startswith("gpt-3.5-turbo") or model.startswith("gpt-4"):
            tokens_per_message = 3
            tokens_per_name = 1
        else:
            raise NotImplementedError(
                f"get_num_tokens_from_messages() is not presently implemented "
                f"for model {model}. See "
                "https://platform.openai.com/docs/guides/text-generation/managing-tokens"
                " for information on how messages are converted to tokens."
            )
        num_tokens = 0
        messages_dict = [_convert_message_to_dict(m) for m in messages]
        for message in messages_dict:
            num_tokens += tokens_per_message
            for key, value in message.items():
                # Cast str(value) in case the message value is not a string
                # This occurs with function messages
                num_tokens += len(encoding.encode(str(value)))
                if key == "name":
                    num_tokens += tokens_per_name
        # every reply is primed with <im_start>assistant
        num_tokens += 3
        return num_tokens

    def bind_functions(
        self,
        functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]],
        function_call: Optional[str] = None,
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, BaseMessage]:
        """Bind functions (and other objects) to this chat model.

        Args:
            functions: A list of function definitions to bind to this chat model.
                Can be  a dictionary, pydantic model, or callable. Pydantic
                models and callables will be automatically converted to
                their schema dictionary representation.
            function_call: Which function to require the model to call.
                Must be the name of the single provided function or
                "auto" to automatically determine which function to call
                (if any).
            kwargs: Any additional parameters to pass to the
                :class:`~langchain.runnable.Runnable` constructor.
        """

        formatted_functions = [convert_to_openai_function(fn) for fn in functions]
        if function_call is not None:
            if len(formatted_functions) != 1:
                raise ValueError(
                    "When specifying `function_call`, you must provide exactly one "
                    "function."
                )
            if formatted_functions[0]["name"] != function_call:
                raise ValueError(
                    f"Function call {function_call} was specified, but the only "
                    f"provided function was {formatted_functions[0]['name']}."
                )
            function_call_ = {"name": function_call}
            kwargs = {**kwargs, "function_call": function_call_}
        return super().bind(
            functions=formatted_functions,
            **kwargs,
        )
