o
    +ifX                     @  sL  d dl mZ d dlmZmZmZmZmZmZ d dl	m
Z
 d dlZddlmZ ddlmZ ddlmZmZmZmZmZ dd	lmZmZmZ dd
lmZ ddlmZmZ ddlm Z m!Z! ddl"m#Z#m$Z$ ddl%m&Z& ddl'm(Z( ddl)m*Z* ddgZ+G dd deZ,G dd deZ-G dd dZ.G dd dZ/G dd dZ0G dd dZ1dS )    )annotations)DictListUnionIterableOptionaloverload)LiteralN   )_legacy_response)completion_create_params)	NOT_GIVENBodyQueryHeadersNotGiven)required_argsmaybe_transformasync_maybe_transform)cached_property)SyncAPIResourceAsyncAPIResource)to_streamed_response_wrapper"async_to_streamed_response_wrapper)StreamAsyncStream)make_request_options)
Completion) ChatCompletionStreamOptionsParamCompletionsAsyncCompletionsc                   @    e Zd Zed<ddZed=ddZeeeeeeeeeeeeeeeeeddded	d>d0d1Zeeeeeeeeeeeeeeeeddded2d?d5d1Zeeeeeeeeeeeeeeeeddded2d@d8d1Ze	d
dgg d9eeeeeeeeeeeeeeeeddded	dAd;d1ZdS )Br   returnCompletionsWithRawResponsec                 C     t | S N)r#   self r(   U/var/www/html/corbot_env/lib/python3.10/site-packages/openai/resources/completions.pywith_raw_response       zCompletions.with_raw_response CompletionsWithStreamingResponsec                 C  r$   r%   )r,   r&   r(   r(   r)   with_streaming_response$   r+   z#Completions.with_streaming_responseNbest_ofechofrequency_penalty
logit_biaslogprobs
max_tokensnpresence_penaltyseedstopstreamstream_optionssuffixtemperaturetop_puserextra_headersextra_query
extra_bodytimeoutmodelKUnion[str, Literal['gpt-3.5-turbo-instruct', 'davinci-002', 'babbage-002']]promptCUnion[str, List[str], Iterable[int], Iterable[Iterable[int]], None]r/   Optional[int] | NotGivenr0   Optional[bool] | NotGivenr1   Optional[float] | NotGivenr2   #Optional[Dict[str, int]] | NotGivenr3   r4   r5   r6   r7   r8   0Union[Optional[str], List[str], None] | NotGivenr9   #Optional[Literal[False]] | NotGivenr:   5Optional[ChatCompletionStreamOptionsParam] | NotGivenr;   Optional[str] | NotGivenr<   r=   r>   str | NotGivenr?   Headers | Noner@   Query | NonerA   Body | NonerB   'float | httpx.Timeout | None | NotGivenr   c                C     dS u  
        Creates a completion for the provided prompt and parameters.

        Args:
          model: ID of the model to use. You can use the
              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
              see all of your available models, or see our
              [Model overview](https://platform.openai.com/docs/models/overview) for
              descriptions of them.

          prompt: The prompt(s) to generate completions for, encoded as a string, array of
              strings, array of tokens, or array of token arrays.

              Note that <|endoftext|> is the document separator that the model sees during
              training, so if a prompt is not specified the model will generate as if from the
              beginning of a new document.

          best_of: Generates `best_of` completions server-side and returns the "best" (the one with
              the highest log probability per token). Results cannot be streamed.

              When used with `n`, `best_of` controls the number of candidate completions and
              `n` specifies how many to return – `best_of` must be greater than `n`.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          echo: Echo back the prompt in addition to the completion

          frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
              existing frequency in the text so far, decreasing the model's likelihood to
              repeat the same line verbatim.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)

          logit_bias: Modify the likelihood of specified tokens appearing in the completion.

              Accepts a JSON object that maps tokens (specified by their token ID in the GPT
              tokenizer) to an associated bias value from -100 to 100. You can use this
              [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
              Mathematically, the bias is added to the logits generated by the model prior to
              sampling. The exact effect will vary per model, but values between -1 and 1
              should decrease or increase likelihood of selection; values like -100 or 100
              should result in a ban or exclusive selection of the relevant token.

              As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
              from being generated.

          logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
              well the chosen tokens. For example, if `logprobs` is 5, the API will return a
              list of the 5 most likely tokens. The API will always return the `logprob` of
              the sampled token, so there may be up to `logprobs+1` elements in the response.

              The maximum value for `logprobs` is 5.

          max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
              completion.

              The token count of your prompt plus `max_tokens` cannot exceed the model's
              context length.
              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
              for counting tokens.

          n: How many completions to generate for each prompt.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
              whether they appear in the text so far, increasing the model's likelihood to
              talk about new topics.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)

          seed: If specified, our system will make a best effort to sample deterministically,
              such that repeated requests with the same `seed` and parameters should return
              the same result.

              Determinism is not guaranteed, and you should refer to the `system_fingerprint`
              response parameter to monitor changes in the backend.

          stop: Up to 4 sequences where the API will stop generating further tokens. The
              returned text will not contain the stop sequence.

          stream: Whether to stream back partial progress. If set, tokens will be sent as
              data-only
              [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
              as they become available, with the stream terminated by a `data: [DONE]`
              message.
              [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).

          stream_options: Options for streaming response. Only set this when you set `stream: true`.

          suffix: The suffix that comes after a completion of inserted text.

              This parameter is only supported for `gpt-3.5-turbo-instruct`.

          temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
              make the output more random, while lower values like 0.2 will make it more
              focused and deterministic.

              We generally recommend altering this or `top_p` but not both.

          top_p: An alternative to sampling with temperature, called nucleus sampling, where the
              model considers the results of the tokens with top_p probability mass. So 0.1
              means only the tokens comprising the top 10% probability mass are considered.

              We generally recommend altering this or `temperature` but not both.

          user: A unique identifier representing your end-user, which can help OpenAI to monitor
              and detect abuse.
              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).

          extra_headers: Send extra headers

          extra_query: Add additional query parameters to the request

          extra_body: Add additional JSON properties to the request

          timeout: Override the client-level default timeout for this request, in seconds
        Nr(   r'   rC   rE   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   r(   r(   r)   create(       zCompletions.creater/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r:   r;   r<   r=   r>   r?   r@   rA   rB   Literal[True]Stream[Completion]c                C  rT   u  
        Creates a completion for the provided prompt and parameters.

        Args:
          model: ID of the model to use. You can use the
              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
              see all of your available models, or see our
              [Model overview](https://platform.openai.com/docs/models/overview) for
              descriptions of them.

          prompt: The prompt(s) to generate completions for, encoded as a string, array of
              strings, array of tokens, or array of token arrays.

              Note that <|endoftext|> is the document separator that the model sees during
              training, so if a prompt is not specified the model will generate as if from the
              beginning of a new document.

          stream: Whether to stream back partial progress. If set, tokens will be sent as
              data-only
              [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
              as they become available, with the stream terminated by a `data: [DONE]`
              message.
              [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).

          best_of: Generates `best_of` completions server-side and returns the "best" (the one with
              the highest log probability per token). Results cannot be streamed.

              When used with `n`, `best_of` controls the number of candidate completions and
              `n` specifies how many to return – `best_of` must be greater than `n`.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          echo: Echo back the prompt in addition to the completion

          frequency_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on their
              existing frequency in the text so far, decreasing the model's likelihood to
              repeat the same line verbatim.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)

          logit_bias: Modify the likelihood of specified tokens appearing in the completion.

              Accepts a JSON object that maps tokens (specified by their token ID in the GPT
              tokenizer) to an associated bias value from -100 to 100. You can use this
              [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs.
              Mathematically, the bias is added to the logits generated by the model prior to
              sampling. The exact effect will vary per model, but values between -1 and 1
              should decrease or increase likelihood of selection; values like -100 or 100
              should result in a ban or exclusive selection of the relevant token.

              As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token
              from being generated.

          logprobs: Include the log probabilities on the `logprobs` most likely output tokens, as
              well the chosen tokens. For example, if `logprobs` is 5, the API will return a
              list of the 5 most likely tokens. The API will always return the `logprob` of
              the sampled token, so there may be up to `logprobs+1` elements in the response.

              The maximum value for `logprobs` is 5.

          max_tokens: The maximum number of [tokens](/tokenizer) that can be generated in the
              completion.

              The token count of your prompt plus `max_tokens` cannot exceed the model's
              context length.
              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
              for counting tokens.

          n: How many completions to generate for each prompt.

              **Note:** Because this parameter generates many completions, it can quickly
              consume your token quota. Use carefully and ensure that you have reasonable
              settings for `max_tokens` and `stop`.

          presence_penalty: Number between -2.0 and 2.0. Positive values penalize new tokens based on
              whether they appear in the text so far, increasing the model's likelihood to
              talk about new topics.

              [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)

          seed: If specified, our system will make a best effort to sample deterministically,
              such that repeated requests with the same `seed` and parameters should return
              the same result.

              Determinism is not guaranteed, and you should refer to the `system_fingerprint`
              response parameter to monitor changes in the backend.

          stop: Up to 4 sequences where the API will stop generating further tokens. The
              returned text will not contain the stop sequence.

          stream_options: Options for streaming response. Only set this when you set `stream: true`.

          suffix: The suffix that comes after a completion of inserted text.

              This parameter is only supported for `gpt-3.5-turbo-instruct`.

          temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will
              make the output more random, while lower values like 0.2 will make it more
              focused and deterministic.

              We generally recommend altering this or `top_p` but not both.

          top_p: An alternative to sampling with temperature, called nucleus sampling, where the
              model considers the results of the tokens with top_p probability mass. So 0.1
              means only the tokens comprising the top 10% probability mass are considered.

              We generally recommend altering this or `temperature` but not both.

          user: A unique identifier representing your end-user, which can help OpenAI to monitor
              and detect abuse.
              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).

          extra_headers: Send extra headers

          extra_query: Add additional query parameters to the request

          extra_body: Add additional JSON properties to the request

          timeout: Override the client-level default timeout for this request, in seconds
        Nr(   r'   rC   rE   r9   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r:   r;   r<   r=   r>   r?   r@   rA   rB   r(   r(   r)   rW      rX   boolCompletion | Stream[Completion]c                C  rT   r\   r(   r]   r(   r(   r)   rW   Z  rX   rC   rE   r9   3Optional[Literal[False]] | Literal[True] | NotGivenc             	   C  s   | j dti d|d|d|d|d|d|d|d	|d
|	d|
d|d|d|d|d|d|d|d|itjt||||dt|pJdtt dS Nz/completionsrC   rE   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   )r?   r@   rA   rB   F)bodyoptionscast_tor9   
stream_cls)_postr   r   CompletionCreateParamsr   r   r   rV   r(   r(   r)   rW     sb   	
)r"   r#   )r"   r,   .rC   rD   rE   rF   r/   rG   r0   rH   r1   rI   r2   rJ   r3   rG   r4   rG   r5   rG   r6   rI   r7   rG   r8   rK   r9   rL   r:   rM   r;   rN   r<   rI   r=   rI   r>   rO   r?   rP   r@   rQ   rA   rR   rB   rS   r"   r   ).rC   rD   rE   rF   r9   rZ   r/   rG   r0   rH   r1   rI   r2   rJ   r3   rG   r4   rG   r5   rG   r6   rI   r7   rG   r8   rK   r:   rM   r;   rN   r<   rI   r=   rI   r>   rO   r?   rP   r@   rQ   rA   rR   rB   rS   r"   r[   ).rC   rD   rE   rF   r9   r^   r/   rG   r0   rH   r1   rI   r2   rJ   r3   rG   r4   rG   r5   rG   r6   rI   r7   rG   r8   rK   r:   rM   r;   rN   r<   rI   r=   rI   r>   rO   r?   rP   r@   rQ   rA   rR   rB   rS   r"   r_   ).rC   rD   rE   rF   r/   rG   r0   rH   r1   rI   r2   rJ   r3   rG   r4   rG   r5   rG   r6   rI   r7   rG   r8   rK   r9   ra   r:   rM   r;   rN   r<   rI   r=   rI   r>   rO   r?   rP   r@   rQ   rA   rR   rB   rS   r"   r_   
__name__
__module____qualname__r   r*   r-   r   r   rW   r   r(   r(   r(   r)   r             c                   @  r!   )Br    r"   AsyncCompletionsWithRawResponsec                 C  r$   r%   )ro   r&   r(   r(   r)   r*   3  r+   z"AsyncCompletions.with_raw_response%AsyncCompletionsWithStreamingResponsec                 C  r$   r%   )rp   r&   r(   r(   r)   r-   7  r+   z(AsyncCompletions.with_streaming_responseNr.   rC   rD   rE   rF   r/   rG   r0   rH   r1   rI   r2   rJ   r3   r4   r5   r6   r7   r8   rK   r9   rL   r:   rM   r;   rN   r<   r=   r>   rO   r?   rP   r@   rQ   rA   rR   rB   rS   r   c                     dS rU   r(   rV   r(   r(   r)   rW   ;      zAsyncCompletions.createrY   rZ   AsyncStream[Completion]c                  rq   r\   r(   r]   r(   r(   r)   rW     rr   r^   $Completion | AsyncStream[Completion]c                  rq   r\   r(   r]   r(   r(   r)   rW   m  rr   r`   ra   c             	     s   | j dti d|d|d|d|d|d|d|d	|d
|	d|
d|d|d|d|d|d|d|d|itjI d H t||||dt|pNdtt dI d H S rb   )rg   r   r   rh   r   r   r   rV   r(   r(   r)   rW     sd   	
)r"   ro   )r"   rp   ri   ).rC   rD   rE   rF   r9   rZ   r/   rG   r0   rH   r1   rI   r2   rJ   r3   rG   r4   rG   r5   rG   r6   rI   r7   rG   r8   rK   r:   rM   r;   rN   r<   rI   r=   rI   r>   rO   r?   rP   r@   rQ   rA   rR   rB   rS   r"   rs   ).rC   rD   rE   rF   r9   r^   r/   rG   r0   rH   r1   rI   r2   rJ   r3   rG   r4   rG   r5   rG   r6   rI   r7   rG   r8   rK   r:   rM   r;   rN   r<   rI   r=   rI   r>   rO   r?   rP   r@   rQ   rA   rR   rB   rS   r"   rt   ).rC   rD   rE   rF   r/   rG   r0   rH   r1   rI   r2   rJ   r3   rG   r4   rG   r5   rG   r6   rI   r7   rG   r8   rK   r9   ra   r:   rM   r;   rN   r<   rI   r=   rI   r>   rO   r?   rP   r@   rQ   rA   rR   rB   rS   r"   rt   rj   r(   r(   r(   r)   r    2  rn   c                   @     e Zd ZdddZdS )	r#   completionsr   r"   Nonec                 C     || _ t|j| _d S r%   )_completionsr   to_raw_response_wrapperrW   r'   rv   r(   r(   r)   __init__F     
z#CompletionsWithRawResponse.__init__Nrv   r   r"   rw   rk   rl   rm   r|   r(   r(   r(   r)   r#   E      r#   c                   @  ru   )	ro   rv   r    r"   rw   c                 C  rx   r%   )ry   r   async_to_raw_response_wrapperrW   r{   r(   r(   r)   r|   O  r}   z(AsyncCompletionsWithRawResponse.__init__Nrv   r    r"   rw   r   r(   r(   r(   r)   ro   N  r   ro   c                   @  ru   )	r,   rv   r   r"   rw   c                 C     || _ t|j| _d S r%   )ry   r   rW   r{   r(   r(   r)   r|   X     
z)CompletionsWithStreamingResponse.__init__Nr~   r   r(   r(   r(   r)   r,   W  r   r,   c                   @  ru   )	rp   rv   r    r"   rw   c                 C  r   r%   )ry   r   rW   r{   r(   r(   r)   r|   a  r   z.AsyncCompletionsWithStreamingResponse.__init__Nr   r   r(   r(   r(   r)   rp   `  r   rp   )2
__future__r   typingr   r   r   r   r   r   typing_extensionsr	   httpx r   typesr   _typesr   r   r   r   r   _utilsr   r   r   _compatr   	_resourcer   r   	_responser   r   
_streamingr   r   _base_clientr   types.completionr   /types.chat.chat_completion_stream_options_paramr   __all__r   r    r#   ro   r,   rp   r(   r(   r(   r)   <module>   s<            			