o
    +if*                     @  s<  d dl mZ d dlZd dlmZmZmZmZ d dlm	Z	 d dl
Z
ddlmZ ddlmZ ddlmZmZmZmZmZ dd	lmZmZ dd
lmZ ddlmZmZ ddlmZm Z  ddl!m"Z"m#Z# ddl$m%Z% ddl&m'Z' ddgZ(G dd deZ)G dd de Z*G dd dZ+G dd dZ,G dd dZ-G dd dZ.dS )    )annotationsN)ListUnionIterablecast)Literal   )_legacy_response)embedding_create_params)	NOT_GIVENBodyQueryHeadersNotGiven)is_givenmaybe_transform)cached_property)numpy	has_numpy)SyncAPIResourceAsyncAPIResource)to_streamed_response_wrapper"async_to_streamed_response_wrapper)make_request_options)CreateEmbeddingResponse
EmbeddingsAsyncEmbeddingsc                   @  D   e Zd ZedddZed ddZeeeddded	d!ddZdS )"r   returnEmbeddingsWithRawResponsec                 C     t | S N)r   self r$   T/var/www/html/corbot_env/lib/python3.10/site-packages/openai/resources/embeddings.pywith_raw_response      zEmbeddings.with_raw_responseEmbeddingsWithStreamingResponsec                 C  r    r!   )r(   r"   r$   r$   r%   with_streaming_response    r'   z"Embeddings.with_streaming_responseN
dimensionsencoding_formatuserextra_headersextra_query
extra_bodytimeoutinput=Union[str, List[str], Iterable[int], Iterable[Iterable[int]]]modelaUnion[str, Literal['text-embedding-ada-002', 'text-embedding-3-small', 'text-embedding-3-large']]r+   int | NotGivenr,   %Literal['float', 'base64'] | NotGivenr-   str | NotGivenr.   Headers | Noner/   Query | Noner0   Body | Noner1   'float | httpx.Timeout | None | NotGivenr   c       	      
     s\   |||| d}
t  st rd|
d< d fdd}| jd	t|
tjt||||	|d
tdS )
  
        Creates an embedding vector representing the input text.

        Args:
          input: Input text to embed, encoded as a string or array of tokens. To embed multiple
              inputs in a single request, pass an array of strings or array of token arrays.
              The input must not exceed the max input tokens for the model (8192 tokens for
              `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
              dimensions or less.
              [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
              for counting tokens.

          model: ID of the model to use. You can use the
              [List models](https://platform.openai.com/docs/api-reference/models/list) API to
              see all of your available models, or see our
              [Model overview](https://platform.openai.com/docs/models/overview) for
              descriptions of them.

          dimensions: The number of dimensions the resulting output embeddings should have. Only
              supported in `text-embedding-3` and later models.

          encoding_format: The format to return the embeddings in. Can be either `float` or
              [`base64`](https://pypi.org/project/pybase64/).

          user: A unique identifier representing your end-user, which can help OpenAI to monitor
              and detect abuse.
              [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).

          extra_headers: Send extra headers

          extra_query: Add additional query parameters to the request

          extra_body: Add additional JSON properties to the request

          timeout: Override the client-level default timeout for this request, in seconds
        r2   r4   r-   r+   r,   base64r,   objr   r   c                   N   t  r| S | jD ]}tt|j}t|tsq	tjt	
|dd |_q	| S Nfloat32)dtyper   datar   object	embedding
isinstancestrnp
frombufferr?   	b64decodetolistr@   rH   rF   r,   r$   r%   parsera      


z!Embeddings.create.<locals>.parser/embeddingsr.   r/   r0   r1   post_parserbodyoptionscast_toNr@   r   r   r   r   r   _postr   r
   EmbeddingCreateParamsr   r   r#   r2   r4   r+   r,   r-   r.   r/   r0   r1   paramsrQ   r$   rP   r%   create$   s*   4
zEmbeddings.create)r   r   )r   r(   r2   r3   r4   r5   r+   r6   r,   r7   r-   r8   r.   r9   r/   r:   r0   r;   r1   r<   r   r   __name__
__module____qualname__r   r&   r)   r   r`   r$   r$   r$   r%   r          c                   @  r   )"r   r   AsyncEmbeddingsWithRawResponsec                 C  r    r!   )rg   r"   r$   r$   r%   r&      r'   z!AsyncEmbeddings.with_raw_response$AsyncEmbeddingsWithStreamingResponsec                 C  r    r!   )rh   r"   r$   r$   r%   r)      r'   z'AsyncEmbeddings.with_streaming_responseNr*   r2   r3   r4   r5   r+   r6   r,   r7   r-   r8   r.   r9   r/   r:   r0   r;   r1   r<   r   c       	      
     sd   |||| d}
t  st rd|
d< d fdd}| jd	t|
tjt||||	|d
tdI dH S )r=   r>   r?   r,   r@   r   r   c                   rA   rB   rE   rO   rP   r$   r%   rQ      rR   z&AsyncEmbeddings.create.<locals>.parserrS   rT   rV   NrZ   r[   r^   r$   rP   r%   r`      s,   4
zAsyncEmbeddings.create)r   rg   )r   rh   ra   rb   r$   r$   r$   r%   r      rf   c                   @     e Zd ZdddZdS )	r   
embeddingsr   r   Nonec                 C     || _ t|j| _d S r!   )_embeddingsr	   to_raw_response_wrapperr`   r#   rj   r$   r$   r%   __init__      
z"EmbeddingsWithRawResponse.__init__Nrj   r   r   rk   rc   rd   re   rp   r$   r$   r$   r%   r          r   c                   @  ri   )	rg   rj   r   r   rk   c                 C  rl   r!   )rm   r	   async_to_raw_response_wrapperr`   ro   r$   r$   r%   rp      rq   z'AsyncEmbeddingsWithRawResponse.__init__Nrj   r   r   rk   rs   r$   r$   r$   r%   rg      rt   rg   c                   @  ri   )	r(   rj   r   r   rk   c                 C     || _ t|j| _d S r!   )rm   r   r`   ro   r$   r$   r%   rp         
z(EmbeddingsWithStreamingResponse.__init__Nrr   rs   r$   r$   r$   r%   r(      rt   r(   c                   @  ri   )	rh   rj   r   r   rk   c                 C  rw   r!   )rm   r   r`   ro   r$   r$   r%   rp     rx   z-AsyncEmbeddingsWithStreamingResponse.__init__Nrv   rs   r$   r$   r$   r%   rh      rt   rh   )/
__future__r   r?   typingr   r   r   r   typing_extensionsr   httpx r	   typesr
   _typesr   r   r   r   r   _utilsr   r   _compatr   _extrasr   rK   r   	_resourcer   r   	_responser   r   _base_clientr   types.create_embedding_responser   __all__r   r   r   rg   r(   rh   r$   r$   r$   r%   <module>   s,   ee			