o
    ʩZhG                     @   s  d Z ddlZddlmZ ddlZddlZddlm	Z	m
Z
mZmZmZmZ ddlmZmZmZmZ ddlmZ e	e
eeeefZedd eD Zejeed	d
d ZejjZdKddZeZeZdd Zdd Z dd Z!dd Z"dd Z#dd Z$dd Z%dd Z&dd  Z'd!d" Z(d#d$ Z)d%d& Z*d'd( Z+d)d* Z,d+d, Z-d-d. Z.d/d0 Z/d1d2 Z0d3d4 Z1d5d6 Z2d7d8 Z3d9d: Z4d;d< Z5d=d> Z6d?d@ Z7dAdB Z8dCdD Z9dEdF Z:dGdH Z;G dIdJ dJZ<dS )LzTest inter-conversion of different polynomial classes.

This tests the convert and cast methods of all the polynomial classes.

    N)Number)
PolynomialLegendre	ChebyshevLaguerreHermiteHermiteE)assert_almost_equalassert_raisesassert_equalassert_)RankWarningc                 c   s    | ]}|j V  qd S N)__name__).0cls r   Z/var/www/html/lang_env/lib/python3.10/site-packages/numpy/polynomial/tests/test_classes.py	<genexpr>   s    r   )paramsZidsc                 C   s   | j S r   )param)requestr   r   r   Poly   s   r    c                 C   sh   z t t| j|jk t t| j|jk t| j|j W d S  ty3   d|  d| }t|w )NzResult: z	
Target: )r   npalldomainwindowr	   coefAssertionError)p1p2msgr   r   r   assert_poly_almost_equal&   s   r#   c           
      C   s   t ddd}td}| jtdd  }| jtdd  }| |||d}|jtdd  }|jtdd  }|j|||d}	t|	j| t|	j| t|	||| d S )	Nr      
               ?r   r   )kindr   r   )r   linspacerandomr   r   convertr	   
Poly1Poly2xr   Zd1Zw1r    Zd2Zw2r!   r   r   r   test_conversion8      r4   c           
      C   s   t ddd}td}| jtdd  }| jtdd  }| |||d}|jtdd  }|jtdd  }|j|||d}	t|	j| t|	j| t|	||| d S )Nr   r$   r%   r&   r(   r*   r+   )r   r-   r.   r   r   castr	   r0   r   r   r   	test_castI   r5   r7   c                 C   sr   | j tdd  }| jtdd  }t|d |d d}| j||d}t|j | t|j| t||| d S )Nr(   r*   r   r$      r+   )r   r.   r   r   r-   identityr   r	   )r   dwr3   pr   r   r   test_identity_   s   r=   c                 C   sh   | j tdd  }| jtdd  }| jd||d}t|j | t|j| t|jdgd dg  d S )Nr(   r*      r+   r   r$   )r   r.   r   basisr   r   r   r:   r;   r<   r   r   r   
test_basisi   s   rA   c                 C   s   | j tdd  }| jtdd  }td}| j|||d}t| t| t|j | t|j| t||d tj }tj}tj	|||d}t|j
d d d S )Nr(   r*   )r>   r+   r   r$   )r   r.   r   	fromrootsr   degreelenr	   r   r6   r   )r   r:   r;   rr    ZpdomZpwinr!   r   r   r   test_fromrootsr   s   rG   c                 C   sd   g d}g d}t t}| ||d W d    n1 sw   Y  |d jjd dks0J d S )N)        rH         ?)rI   g       @g      @r)   r   z!The fit may be poorly conditioned)pytestZwarnsr   fitmessageargs)r   r3   yrecordr   r   r   test_bad_conditioned_fit   s   rP   c                 C   s  dd }t dd}||}| ||d}t|jddg t||| t| d | jtdd  }| jtdd  }| j||d||d}t||| t|j| t|j| | j||g d||d}t||| t|j| t|j| | ||dg }t|j| j t|j| j | ||g dg }t|j| j t|j| j t 	|}|t|j
d  }d	|d d d
< | |d d d
 |d d d
 d}| j||d|d}	| j||g d|d}
t|||	| t|	||
| d S )Nc                 S   s   | | d  | d  S Nr$   r)   r   )r3   r   r   r   f      ztest_fit.<locals>.fr   r'   r(   r*   r+   )r   r$   r)   r'   r$   r)   )r;   )r   r-   rK   r	   r   r   rD   r.   r   Z
zeros_likeshape)r   rR   r3   rN   r<   r:   r;   zr    r!   p3r   r   r   test_fit   s>   
"rW   c                 C   s   | g dddgddgd}| g dddgddgd}| g dddgddgd}| g dddgddgd}t ||k t ||k  t ||k  t ||k  d S Nr$   r)   r'   r   r$   r)   r'   r+   )r$   r$   r$   r   r   r    r!   rV   p4r   r   r   
test_equal   s   r]   c                 C   s   | g dddgddgd}| g dddgddgd}| g dddgddgd}| g dddgddgd}t ||k  t ||k t ||k t ||k d S rX   rZ   r[   r   r   r   test_not_equal   s   r^   c                 C   s*  t tdd }t tdd }| |}| |}|| }t|| | t|| | t|| | t|t| | tt|| | t|t| | tt|| | tttj	|| dg| j
d d tttj	|| dg| jd d | tu rtttj	|tdg d S tttj	|tdg d S N         ?r&   r   r$   r   r   )listr.   r#   tupler   arrayr
   	TypeErroropaddr   r   r   r   r   c1c2r    r!   rV   r   r   r   test_add   s"     rn   c                 C   s2  t tdd }t tdd }| |}| |}|| }t|| |  t|| | t|| |  t|t| | tt|| |  t|t| | tt|| |  tttj	|| dg| j
d d tttj	|| dg| jd d | tu rtttj	|tdg d S tttj	|tdg d S r_   )re   r.   r#   rf   r   rg   r
   rh   ri   subr   r   r   r   rk   r   r   r   test_sub   s"     rp   c                 C   sZ  t tdd }t tdd }| |}| |}|| }t|| | t|| | t|| | t|t| | tt|| | t|t| | tt|| | t|d || dg  td| || dg  tttj	|| dg| j
d d tttj	|| dg| jd d | tu rtttj	|tdg d S tttj	|tdg d S )	Nr`   rb   r&   r)   r   r$   rc   rd   )re   r.   r#   rf   r   rg   r
   rh   ri   mulr   r   r   r   rk   r   r   r   test_mul   s&     rr   c           	      C   sv  t tdd }t tdd }t tdd }| |}| |}| |}|| | }t |j}t|| | t|| | t|| | t|t| | tt|| | t|t| | tt|| | td| | dg t|d d|  ttt	j
|| dg| jd d ttt	j
|| dg| jd d	 | tu rttt	j
|tdg d S ttt	j
|tdg d S 
Nr`   rb   r&   r(   r)   r   r$   rc   rd   )re   r.   r   r#   rf   r   rg   r
   rh   ri   floordivr   r   r   r   	r   rl   rm   c3r    r!   rV   r\   c4r   r   r   test_floordiv  s4   
rx   c                 C   s6  | g d}|d }t jD ]"}t|trt|trq|d}tt||| tt	tj|| qt
tfD ]}|d}tt||| tt	tj|| q4tfD ]}|dd}tt||| tt	tj|| qOt t t t t dgfD ]}tt	tj|| tt	tj|| qwtD ]}tt	tj||d qd S )NrY   r>   r   r$   )r   Z
ScalarType
issubclassr   boolr#   ri   truedivr
   rh   intfloatcomplexrf   re   dictrg   classes)r   r    r!   stypesptyper   r   r   test_truediv1  s,   


"r   c           	      C   sx  t tdd }t tdd }t tdd }| |}| |}| |}|| | }t |j}t|| | t|| | t|| | t|t| | tt|| | t|t| | tt|| | td| | dg t|d | dg ttt	j
|| dg| jd d ttt	j
|| dg| jd d	 | tu rttt	j
|tdg d S ttt	j
|tdg d S rs   )re   r.   r   r#   rf   r   rg   r
   rh   ri   modr   r   r   r   ru   r   r   r   test_modL  s,   
  r   c                 C   s0  t tdd }t tdd }t tdd }| |}| |}| |}|| | }t |j}t||\}	}
t|	| t|
| t||\}	}
t|	| t|
| t||\}	}
t|	| t|
| t|t|\}	}
t|	| t|
| tt||\}	}
t|	| t|
| t|t|\}	}
t|	| t|
| tt||\}	}
t|	| t|
| t|d\}	}
t|	d|  t|
| dg td|\}	}
t|	| dg t|
| dg tt	t|| dg| j
d d tt	t|| dg| jd d	 | tu rtt	t|tdg d S tt	t|tdg d S rs   )re   r.   r   divmodr#   rf   r   rg   r
   rh   r   r   r   r   )r   rl   rm   rv   r    r!   rV   r\   rw   Zquoremr   r   r   test_divmodg  sP   















r   c                 C   sp   | j d d }| j}t|d |d d}t| j|||d }t|| t| | }t|| d S )Ng      ?r*   r   r$   r>   r+   )r   r   r   r-   sortrC   rootsr	   )r   r:   r;   tgtresr   r   r   
test_roots  s   
r   c                 C   s   |  d}t| d d S Nr>   )r?   r   rD   r   r<   r   r   r   test_degree  s   
r   c                 C   s^   |  d}| }t||k t||u t|j|ju t|j|ju t|j|ju d S r   )r?   copyr   r   r   r   )r   r    r!   r   r   r   	test_copy  s   
r   c                 C   sz  t }| |g d}|| }||d}t||g d t||g d | |g d}||jdd}||jdddgd}t||g d t||g d | |g d}||jdd	}||jddd	}t||g d
 t||g d d| j }| j|g d|d}|| }||d}t||g d t||g d d S )N)r)         r)   )r   r)   r'   ra   )r   r   r$   r$   r$   r$   k)r$   r)   r'   ra   )r$   r$   r$   r$   r$   )Zlbnd)r)   r'   ra   )r   r   r$   r$   r$   rc   )r   r6   integr#   r   )r   Pp0r    r!   r:   r   r   r   
test_integ  s,   
r   c                 C   s   | j tdd  }| jtdd  }| g d||d}|jdddgd}|jddgd}t|dj|j t|dj|j | g d}|jdddgd}|jddgd}t|dj|j t|dj|j d S )Nr(   r*   rY   r+   r)   r$   r   )r   r.   r   r   r	   Zderivr   )r   r:   r;   r    r!   rV   r   r   r   
test_deriv  s   r   c                 C   s   | j tdd  }| jtdd  }| g d||d}t|d |d d}||}|d\}}t|| t|| tddd}||}|jdddgd	\}}t|| t|| d S )
Nr(   r*   rY   r+   r   r$      r)   rc   )r   r.   r   r   r-   r	   )r   r:   r;   r<   ZxtgtZytgtZxresZyresr   r   r   test_linspace  s   


r   c                 C   s   | j tdd  }| jtdd  }| dg||d}| g d||d}tdD ]}t|| | || }q'| dg}| g d}tdD ]}t|| | || }qDtttj|d tttj|d d S )	Nr(   r*   r$   r+   rY   r>   g      ?rB   )	r   r.   r   ranger#   r
   
ValueErrorri   pow)r   r:   r;   r   Ztstir   r   r   test_pow  s   


r   c                 C   s\   t }| j}t|d |d d}| |g d}d|dd|    }||}t|| d S )Nr   r$   r8   rY   r)   r'   )r   r   r   r-   r6   r	   )r   r   r:   r3   r<   r   r   r   r   r   	test_call  s   r   c                 C   s|   | g d}t t|jd t t|jd tt|dd tt|dd tt|dd tt|dd d S )NrY   rb   rB   r'   r)   r$   r   )r
   r   Zcutdegr   rE   r   r   r   r   test_cutdeg     r   c                 C   s|   | g d}t t|jd t t|jd tt|dd tt|dd tt|dd tt|dd d S )NrY   rb   r   ra   r'   r)   r$   )r
   r   truncater   rE   r   r   r   r   test_truncate  r   r   c                 C   s`   g d}| |}t | j|d d  t |dj|d d  t |dj|d d  d S )N)r$   gư>g-q=r   r'   g|=r)   gh㈵>r$   )r   Ztrimr   )r   cr<   r   r   r   	test_trim"  s
   r   c                 C   s`   | j }| j}| dg||d}tddg|  d| d }| dg||d}tddg|  d S )Nr$   r+   r   r)   )r   r   r	   Zmapparmsr@   r   r   r   test_mapparms*  s   r   c                 C   s:   | g d}t d}ttt j|| ttt j|| d S )NrY   r'   )r   Zonesr
   rh   rj   )r   r<   r3   r   r   r   test_ufunc_override6  s   
r   c                   @   s,   e Zd Zdd Zdd Zdd Zdd Zd	S )
TestInterpolatec                 C   s   ||d  |d  S rQ   r   )selfr3   r   r   r   rR   D  rS   zTestInterpolate.fc                 C   s(   t ttj| jd t ttj| jd d S )NrB   g      $@)r
   r   r   interpolaterR   rh   )r   r   r   r   test_raisesG  s   zTestInterpolate.test_raisesc                 C   s.   t ddD ]}tt| j| |k qd S )Nr$   r>   )r   r   r   r   rR   rD   )r   degr   r   r   test_dimensionsK  s   zTestInterpolate.test_dimensionsc                 C   sn   dd }t ddd}tddD ]$}td|d D ]}tj||ddg|fd}t|||||dd	 qqd S )
Nc                 S   s   | | S r   r   )r3   r<   r   r   r   powxQ  s   z0TestInterpolate.test_approximation.<locals>.powxr   r)   r%   r$   )r   rM   r8   )decimal)r   r-   r   r   r   r	   )r   r   r3   r   tr<   r   r   r   test_approximationO  s   z"TestInterpolate.test_approximationN)r   
__module____qualname__rR   r   r   r   r   r   r   r   r   B  s
    r   )r   )=__doc__operatorri   numbersr   rJ   numpyr   Znumpy.polynomialr   r   r   r   r   r   Znumpy.testingr	   r
   r   r   Znumpy.polynomial.polyutilsr   r   rf   ZclassidsZfixturer   r.   r#   r1   r2   r4   r7   r=   rA   rG   rP   rW   r]   r^   rn   rp   rr   rx   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   <module>   s`     


	,-


