o
    թZh(                     @  s  d dl mZ d dlZd dlZd dlmZmZmZ d dlZd dl	Z
d dlmZ d dlmZmZmZmZ d dlmZmZmZmZmZmZmZmZmZ d dlmZ d dlmZ d d	l m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z( d d
l)m*Z*m+Z+m,Z, edddZ-e-duZ.da/ddddZ0e0ed G dd dZ1G dd dZ2ddd Z3dd!d"Z4	ddd%d&Z5dd,d-Z6			ddd2d3Z7dd5d6Z8dd7d8Z9ddd9d:Z:dd=d>Z;ddBdCZ<ddDdEZ=ddddFddGdHZ>ddddFddIdJZ?e1dKe;e=ddd ddLddPdQZ@ddWdXZAe2 e;ddddFddYdZZBe2 ddddFdd[d\ZCdd`daZDe
Ee
jFfddedfZGe2dgdhdddgddiddjdkZHe1dKdle2dgdhdddgddiddmdnZIe1dKdldddgddiddodpZJdqdr ZKeKdsdtduZLeKdvdwduZMddddFddydzZNddddFdd{d|ZOe1dKdle=ddddFdd}d~ZPe1dKdle=ddddFdddZQe1dKdle=ddd ddLdddZRdddZSe
Ee
jFfdddZT	gddddZUdddZVdd ZWe1dKdlddddddZXdddZYe1dKdlddgddddZZdd Z[dddZ\dS )    )annotationsN)AnyCallablecast)
get_option)NaTNaTTypeiNaTlib)		ArrayLikeAxisIntCorrelationMethodDtypeDtypeObjFScalarShapenpt)import_optional_dependency)find_stack_level)
is_complexis_floatis_float_dtype
is_integeris_numeric_dtypeis_object_dtypeneeds_i8_conversionpandas_dtype)isnana_value_for_dtypenotnaZ
bottleneckwarn)errorsFTvboolreturnNonec                 C  s   t r| ad S d S N)_BOTTLENECK_INSTALLED_USE_BOTTLENECK)r#    r*   I/var/www/html/lang_env/lib/python3.10/site-packages/pandas/core/nanops.pyset_use_bottleneck9   s   r,   zcompute.use_bottleneckc                      s2   e Zd Zd fddZddd	ZdddZ  ZS )disallowdtypesr   r%   r&   c                   s"   t    tdd |D | _d S )Nc                 s  s    | ]}t |jV  qd S r'   )r   type).0dtyper*   r*   r+   	<genexpr>F       z$disallow.__init__.<locals>.<genexpr>)super__init__tupler.   )selfr.   	__class__r*   r+   r5   D   s   
zdisallow.__init__r$   c                 C  s   t |dot|jj| jS )Nr1   )hasattr
issubclassr1   r/   r.   )r7   objr*   r*   r+   checkH   s   zdisallow.checkfr   c                   s"   t   fdd}tt|S )Nc               
     s   t | | }tfdd|D r" jdd}td| dz | i |W S  tyB } zt| d r=t|| d }~ww )Nc                 3  s    | ]}  |V  qd S r'   )r=   )r0   r<   )r7   r*   r+   r2   O   r3   z0disallow.__call__.<locals>._f.<locals>.<genexpr>nan zreduction operation 'z' not allowed for this dtyper   )		itertoolschainvaluesany__name__replace	TypeError
ValueErrorr   )argskwargsZobj_iterf_nameer>   r7   r*   r+   _fL   s   

zdisallow.__call__.<locals>._f	functoolswrapsr   r   )r7   r>   rN   r*   rM   r+   __call__K   s   
zdisallow.__call__)r.   r   r%   r&   r%   r$   )r>   r   r%   r   )rE   
__module____qualname__r5   r=   rR   __classcell__r*   r*   r8   r+   r-   C   s    
r-   c                   @  s"   e Zd Zd
dddZddd	ZdS )bottleneck_switchNr%   r&   c                 K  s   || _ || _d S r'   )namerJ   )r7   rX   rJ   r*   r*   r+   r5   c   s   
zbottleneck_switch.__init__altr   c              	     sf   j p jzttW n ttfy   d Y nw t d ddd fd	d
}tt	|S )NTaxisskipnarC   
np.ndarrayr[   AxisInt | Noner\   r$   c                  s   t jdkrj D ]\}}||vr|||< q| jdkr*|dd u r*t| |S trj|rjt| jrj|dd d u r]|	dd  | fd|i|}t
|r[ | f||d|}|S  | f||d|}|S  | f||d|}|S )Nr   	min_countmaskr[   rZ   )lenrJ   itemssizeget_na_for_min_countr)   _bn_ok_dtyper1   pop	_has_infs)rC   r[   r\   kwdskr#   resultrY   Zbn_funcZbn_namer7   r*   r+   r>   o   s$   
z%bottleneck_switch.__call__.<locals>.f)rC   r]   r[   r^   r\   r$   )
rX   rE   getattrbnAttributeError	NameErrorrP   rQ   r   r   )r7   rY   r>   r*   rl   r+   rR   g   s   
'zbottleneck_switch.__call__r'   )r%   r&   )rY   r   r%   r   )rE   rT   rU   r5   rR   r*   r*   r*   r+   rW   b   s    rW   r1   r   rX   strc                 C  s   | t krt| s|dvS dS )N)nansumnanprodnanmeanF)objectr   )r1   rX   r*   r*   r+   rf      s   rf   c              	   C  sP   t | tjr| jdv rt| dS zt|  W S  t	t
fy'   Y dS w )N)f8Zf4KF)
isinstancenpndarrayr1   r
   Zhas_infsZravelisinfrD   rG   NotImplementedError)rk   r*   r*   r+   rh      s   
rh   
fill_valueScalar | Nonec                 C  sJ   |dur|S t | r|du rtjS |dkrtjS tj S |dkr#tjS tS )z9return the correct fill value for the dtype of the valuesN+inf)_na_ok_dtypery   r?   infr
   i8maxr	   )r1   r}   fill_value_typr*   r*   r+   _get_fill_value   s   r   rC   r]   r\   r`   npt.NDArray[np.bool_] | Nonec                 C  s4   |du r| j jdv rdS |s| j jdv rt| }|S )a  
    Compute a mask if and only if necessary.

    This function will compute a mask iff it is necessary. Otherwise,
    return the provided mask (potentially None) when a mask does not need to be
    computed.

    A mask is never necessary if the values array is of boolean or integer
    dtypes, as these are incapable of storing NaNs. If passing a NaN-capable
    dtype that is interpretable as either boolean or integer data (eg,
    timedelta64), a mask must be provided.

    If the skipna parameter is False, a new mask will not be computed.

    The mask is computed using isna() by default. Setting invert=True selects
    notna() as the masking function.

    Parameters
    ----------
    values : ndarray
        input array to potentially compute mask for
    skipna : bool
        boolean for whether NaNs should be skipped
    mask : Optional[ndarray]
        nan-mask if known

    Returns
    -------
    Optional[np.ndarray[bool]]
    NbiumM)r1   kindr   )rC   r\   r`   r*   r*   r+   _maybe_get_mask   s   !r   r   r   
str | None/tuple[np.ndarray, npt.NDArray[np.bool_] | None]c                 C  s   t | ||}| j}d}| jjdv rt| d} d}|rM|durMt|||d}|durM| rM|s6t|rE| 	 } t
| || | |fS t| | |} | |fS )a  
    Utility to get the values view, mask, dtype, dtype_max, and fill_value.

    If both mask and fill_value/fill_value_typ are not None and skipna is True,
    the values array will be copied.

    For input arrays of boolean or integer dtypes, copies will only occur if a
    precomputed mask, a fill_value/fill_value_typ, and skipna=True are
    provided.

    Parameters
    ----------
    values : ndarray
        input array to potentially compute mask for
    skipna : bool
        boolean for whether NaNs should be skipped
    fill_value : Any
        value to fill NaNs with
    fill_value_typ : str
        Set to '+inf' or '-inf' to handle dtype-specific infinities
    mask : Optional[np.ndarray[bool]]
        nan-mask if known

    Returns
    -------
    values : ndarray
        Potential copy of input value array
    mask : Optional[ndarray[bool]]
        Mask for values, if deemed necessary to compute
    Fr   i8TN)r}   r   )r   r1   r   ry   Zasarrayviewr   rD   r   copyputmaskwhere)rC   r\   r}   r   r`   r1   datetimeliker*   r*   r+   _get_values   s$   )r   np.dtypec                 C  sR   | }| j dv rttj}|S | j dkrttj}|S | j dkr'ttj}|S )NZbiur>   )r   ry   r1   int64Zuint64float64)r1   Z	dtype_maxr*   r*   r+   _get_dtype_maxD  s   


r   c                 C  s   t | rdS t| jtj S )NF)r   r;   r/   ry   integerr1   r*   r*   r+   r   P  s   r   c                 C  s  | t u r	 | S |jdkrM|du rt}t| tjsFt|r J d| |kr'tj} t| r5tdd	|} nt
| |} | j	|dd} | S | 	|} | S |jdkrt| tjs| |ksat| rktd	|} | S t| tjkrwtd	t
| j	|dd} | S | 	d
|} | S )zwrap our results if neededMNzExpected non-null fill_valuer   nsFr   mzoverflow in timedelta operationm8[ns])r   r   r	   rx   ry   rz   r   r?   Z
datetime64astyper   r   isnanZtimedelta64fabsr
   r   rH   )rk   r1   r}   r*   r*   r+   _wrap_resultsV  s8   #


r   funcr   c                   s,   t  ddddd fdd}tt|S )z
    If we have datetime64 or timedelta64 values, ensure we have a correct
    mask before calling the wrapped function, then cast back afterwards.
    NTr[   r\   r`   rC   r]   r[   r^   r\   r$   r`   r   c                  sr   | }| j jdv }|r|d u rt| } | f|||d|}|r7t||j td}|s7|d us0J t||||}|S )Nr   r   )r}   )r1   r   r   r   r	   _mask_datetimelike_result)rC   r[   r\   r`   rJ   orig_valuesr   rk   r   r*   r+   new_func  s   	z&_datetimelike_compat.<locals>.new_funcrC   r]   r[   r^   r\   r$   r`   r   rO   )r   r   r*   r   r+   _datetimelike_compat  s   
r   r[   r^   Scalar | np.ndarrayc                 C  sl   | j jdv r| d} t| j }| jdkr|S |du r|S | jd| | j|d d  }tj||| j dS )a  
    Return the missing value for `values`.

    Parameters
    ----------
    values : ndarray
    axis : int or None
        axis for the reduction, required if values.ndim > 1.

    Returns
    -------
    result : scalar or ndarray
        For 1-D values, returns a scalar of the correct missing type.
        For 2-D values, returns a 1-D array where each element is missing.
    Ziufcbr      Nr   )r1   r   r   r   ndimshapery   full)rC   r[   r}   Zresult_shaper*   r*   r+   re     s   


 re   c                   s(   t  ddd	 fdd}tt|S )
z
    NumPy operations on C-contiguous ndarrays with axis=1 can be
    very slow if axis 1 >> axis 0.
    Operate row-by-row and concatenate the results.
    Nr[   rC   r]   r[   r^   c                  s   |dkrT| j dkrT| jd rT| jd d | jd krT| jtkrT| jtkrTt|  dd urEd fddt	t
 D }n
fd	d D }t|S | fd
|iS )Nr      ZC_CONTIGUOUSi  r   r`   c                   s(   g | ]} | fd | iqS r`   r*   )r0   i)arrsr   rJ   r`   r*   r+   
<listcomp>  s    z:maybe_operate_rowwise.<locals>.newfunc.<locals>.<listcomp>c                   s   g | ]
} |fi qS r*   r*   )r0   x)r   rJ   r*   r+   r     s    r[   )r   flagsr   r1   ru   r$   listrd   rg   rangera   ry   array)rC   r[   rJ   resultsr   )r   rJ   r`   r+   newfunc  s    





z&maybe_operate_rowwise.<locals>.newfunc)rC   r]   r[   r^   rO   )r   r   r*   r   r+   maybe_operate_rowwise  s   
r   r   c                C  n   | j jdv r|du r| |S | j jdkrtjdtt d t| |d|d\} }| j tkr2| 	t
} | |S )a  
    Check if any elements along an axis evaluate to True.

    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : bool

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, 2])
    >>> nanops.nanany(s.values)
    True

    >>> from pandas.core import nanops
    >>> s = pd.Series([np.nan])
    >>> nanops.nanany(s.values)
    False
    iubNr   zz'any' with datetime64 dtypes is deprecated and will raise in a future version. Use (obj != pd.Timestamp(0)).any() instead.
stacklevelFr}   r`   )r1   r   rD   warningsr!   FutureWarningr   r   ru   r   r$   rC   r[   r\   r`   _r*   r*   r+   nanany     "



r   c                C  r   )a  
    Check if all elements along an axis evaluate to True.

    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : bool

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, 2, np.nan])
    >>> nanops.nanall(s.values)
    True

    >>> from pandas.core import nanops
    >>> s = pd.Series([1, 0])
    >>> nanops.nanall(s.values)
    False
    r   Nr   zz'all' with datetime64 dtypes is deprecated and will raise in a future version. Use (obj != pd.Timestamp(0)).all() instead.r   Tr   )r1   r   allr   r!   r   r   r   ru   r   r$   r   r*   r*   r+   nanall  r   r   ZM8)r[   r\   r_   r`   r_   intfloatc                C  sn   | j }t| |d|d\} }t|}|jdkr|}n|jdkr$t tj}| j||d}t|||| j|d}|S )a  
    Sum the elements along an axis ignoring NaNs

    Parameters
    ----------
    values : ndarray[dtype]
    axis : int, optional
    skipna : bool, default True
    min_count: int, default 0
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : dtype

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, 2, np.nan])
    >>> nanops.nansum(s.values)
    3.0
    r   r   r>   r   r   r_   )	r1   r   r   r   ry   r   sum_maybe_null_outr   )rC   r[   r\   r_   r`   r1   	dtype_sumthe_sumr*   r*   r+   rr   \  s   "

rr   rk   +np.ndarray | np.datetime64 | np.timedelta64npt.NDArray[np.bool_]r   5np.ndarray | np.datetime64 | np.timedelta64 | NaTTypec                 C  sT   t | tjr| d|j} |j|d}t| |< | S | r(tt|jS | S )Nr   r   )	rx   ry   rz   r   r   r1   rD   r	   r   )rk   r[   r`   r   Z	axis_maskr*   r*   r+   r     s   r   c                C  s$  | j }t| |d|d\} }t|}t tj}|jdv r#t tj}n|jdv r/t tj}n	|jdkr8|}|}t| j|||d}| j||d}t	|}|durt
|dd	rttj|}tjd
d || }	W d   n1 sqw   Y  |dk}
|
 rtj|	|
< |	S |dkr|| ntj}	|	S )a  
    Compute the mean of the element along an axis ignoring NaNs

    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    float
        Unless input is a float array, in which case use the same
        precision as the input array.

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, 2, np.nan])
    >>> nanops.nanmean(s.values)
    1.5
    r   r   r   iur>   r   Nr   Fignore)r   )r1   r   r   ry   r   r   _get_countsr   r   _ensure_numericrm   r   rz   errstaterD   r?   )rC   r[   r\   r`   r1   r   Zdtype_countcountr   Zthe_meanZct_maskr*   r*   r+   rt     s2   !




rt   c             
     s  | j jdko	|du }d fdd	}| j }t|  |dd\} }| j jdkrU| j tkr:t| }|dv r:td|  dz| d	} W n tyT } ztt	||d}~ww |sh|durh| j
jsc|  } tj| |< | j}	| jd
kr|dur|	rĈ st||| }
nUt 7 tddt | jd
 d
kr|dks| jd d
kr|d
krtjt| dd}
ntj| |d}
W d   n1 sw   Y  nt| j|}
n
|	r|| |ntj}
t|
|S )a  
    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : float
        Unless input is a float array, in which case use the same
        precision as the input array.

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, np.nan, 2, 2])
    >>> nanops.nanmedian(s.values)
    2.0
    r>   Nc                   st   |d u r	t | }n| } s| stjS t  tddt t| | }W d    |S 1 s3w   Y  |S )Nr   All-NaN slice encountered)	r    r   ry   r?   r   catch_warningsfilterwarningsRuntimeWarning	nanmedian)r   Z_maskresr\   r*   r+   
get_median  s   


znanmedian.<locals>.get_median)r`   r}   stringmixedzCannot convert  to numericrv   r   r   r   r   T)Zkeepdimsr   r'   )r1   r   r   ru   r
   infer_dtyperG   r   rH   rq   r   Z	writeabler   ry   r?   rc   r   Zapply_along_axisr   r   r   r   r   r   Zsqueeze_get_empty_reduction_resultr   )rC   r[   r\   r`   Zusing_nan_sentinelr   r1   inferrederrZnotemptyr   r*   r   r+   r     sL   




r   r   r   r   c                 C  s@   t | }t t| }t j|||k t jd}|t j |S )z
    The result from a reduction on an empty ndarray.

    Parameters
    ----------
    shape : Tuple[int, ...]
    axis : int

    Returns
    -------
    np.ndarray
    r   )ry   r   Zarangera   emptyr   fillr?   )r   r[   Zshpdimsretr*   r*   r+   r   C  s
   
r   values_shapeddof-tuple[float | np.ndarray, float | np.ndarray]c                 C  s   t | |||d}||| }t|r!||krtj}tj}||fS ttj|}||k}| r?t||tj t||tj ||fS )a:  
    Get the count of non-null values along an axis, accounting
    for degrees of freedom.

    Parameters
    ----------
    values_shape : Tuple[int, ...]
        shape tuple from values ndarray, used if mask is None
    mask : Optional[ndarray[bool]]
        locations in values that should be considered missing
    axis : Optional[int]
        axis to count along
    ddof : int
        degrees of freedom
    dtype : type, optional
        type to use for count

    Returns
    -------
    count : int, np.nan or np.ndarray
    d : int, np.nan or np.ndarray
    r   )	r   r/   r   ry   r?   r   rz   rD   r   )r   r`   r[   r   r1   r   dr*   r*   r+   _get_counts_nanvarZ  s   r   r   r   r[   r\   r   r`   c             	   C  sN   | j dkr
| d} | j }t| ||d\} }tt| ||||d}t||S )a  
    Compute the standard deviation along given axis while ignoring NaNs

    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    ddof : int, default 1
        Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
        where N represents the number of elements.
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : float
        Unless input is a float array, in which case use the same
        precision as the input array.

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, np.nan, 2, 3])
    >>> nanops.nanstd(s.values)
    1.0
    zM8[ns]r   r   r   )r1   r   r   ry   sqrtnanvarr   )rC   r[   r\   r   r`   Z
orig_dtyperk   r*   r*   r+   nanstd  s   
$

r   Zm8c                C  s  | j }t| ||}|jdv r| d} |durtj| |< | j jdkr/t| j|||| j \}}n
t| j|||\}}|rJ|durJ|  } t	| |d t
| j|tjd| }|dur`t||}t
||  d }	|durst	|	|d |	j|tjd| }
|jdkr|
j|dd	}
|
S )
a  
    Compute the variance along given axis while ignoring NaNs

    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    ddof : int, default 1
        Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
        where N represents the number of elements.
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : float
        Unless input is a float array, in which case use the same
        precision as the input array.

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, np.nan, 2, 3])
    >>> nanops.nanvar(s.values)
    1.0
    r   rv   Nr>   r   )r[   r1   r   Fr   )r1   r   r   r   ry   r?   r   r   r   r   r   r   r   expand_dims)rC   r[   r\   r   r`   r1   r   r   ZavgZsqrrk   r*   r*   r+   r     s,   %



r   c                C  s   t | ||||d t| ||}| jjdkr| d} |s'|dur'| r'tjS t| j	|||| j\}}t | ||||d}t
|t
| S )a  
    Compute the standard error in the mean along given axis while ignoring NaNs

    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    ddof : int, default 1
        Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
        where N represents the number of elements.
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : float64
        Unless input is a float array, in which case use the same
        precision as the input array.

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, np.nan, 2, 3])
    >>> nanops.nansem(s.values)
     0.5773502691896258
    r   r>   rv   N)r   r   r1   r   r   rD   ry   r?   r   r   r   )rC   r[   r\   r   r`   r   r   varr*   r*   r+   nansem  s   &
r   c                   s2   t d dtd dd dd fdd}|S )Nr?   )rX   Tr   rC   r]   r[   r^   r\   r$   r`   r   c                  sJ   | j dkr
t| |S t| | |d\} }t| |}t|||| j}|S )Nr   r   r`   )rc   re   r   rm   r   r   rC   r[   r\   r`   rk   r   methr*   r+   	reduction;  s   
	

z_nanminmax.<locals>.reductionr   )rW   r   )r   r   r   r*   r   r+   
_nanminmax:  s   r  minr   )r   max-infint | np.ndarrayc                C  0   t | dd|d\} }| |}t||||}|S )a  
    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : int or ndarray[int]
        The index/indices  of max value in specified axis or -1 in the NA case

    Examples
    --------
    >>> from pandas.core import nanops
    >>> arr = np.array([1, 2, 3, np.nan, 4])
    >>> nanops.nanargmax(arr)
    4

    >>> arr = np.array(range(12), dtype=np.float64).reshape(4, 3)
    >>> arr[2:, 2] = np.nan
    >>> arr
    array([[ 0.,  1.,  2.],
           [ 3.,  4.,  5.],
           [ 6.,  7., nan],
           [ 9., 10., nan]])
    >>> nanops.nanargmax(arr, axis=1)
    array([2, 2, 1, 1])
    Tr  r   )r   Zargmax_maybe_arg_null_outr   r*   r*   r+   	nanargmaxU     &
r  c                C  r  )a  
    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : int or ndarray[int]
        The index/indices of min value in specified axis or -1 in the NA case

    Examples
    --------
    >>> from pandas.core import nanops
    >>> arr = np.array([1, 2, 3, np.nan, 4])
    >>> nanops.nanargmin(arr)
    0

    >>> arr = np.array(range(12), dtype=np.float64).reshape(4, 3)
    >>> arr[2:, 0] = np.nan
    >>> arr
    array([[ 0.,  1.,  2.],
           [ 3.,  4.,  5.],
           [nan,  7.,  8.],
           [nan, 10., 11.]])
    >>> nanops.nanargmin(arr, axis=1)
    array([0, 0, 1, 1])
    Tr   r   )r   Zargminr  r   r*   r*   r+   	nanargmin  r	  r
  c                C  s  t | ||}| jjdkr| d} t| j||}n
t| j||| jd}|r5|dur5|  } t| |d n|sB|durB|	 rBtj
S tjddd | j|tjd| }W d   n1 s^w   Y  |durmt||}| | }|r~|dur~t||d |d }|| }|j|tjd}	|j|tjd}
t|	}	t|
}
tjddd ||d	 d
  |d  |
|	d   }W d   n1 sw   Y  | j}|jdkr|j|dd}t|tjrt|	dkd|}tj
||dk < |S |	dkr|dn|}|dk rtj
S |S )a  
    Compute the sample skewness.

    The statistic computed here is the adjusted Fisher-Pearson standardized
    moment coefficient G1. The algorithm computes this coefficient directly
    from the second and third central moment.

    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : float64
        Unless input is a float array, in which case use the same
        precision as the input array.

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, np.nan, 1, 2])
    >>> nanops.nanskew(s.values)
    1.7320508075688787
    r>   rv   r   Nr   r   invaliddivider   r   g      ?g      ?Fr      )r   r1   r   r   r   r   r   ry   r   rD   r?   r   r   r   r   _zero_out_fperrrx   rz   r   r/   )rC   r[   r\   r`   r   meanadjusted	adjusted2Z	adjusted3m2Zm3rk   r1   r*   r*   r+   nanskew  sL   %
&

r  c                C  sv  t | ||}| jjdkr| d} t| j||}n
t| j||| jd}|r5|dur5|  } t| |d n|sB|durB|	 rBtj
S tjddd | j|tjd| }W d   n1 s^w   Y  |durmt||}| | }|r~|dur~t||d |d }|d }|j|tjd}	|j|tjd}
tjddd0 d	|d
 d  |d |d	   }||d
  |d
  |
 }|d |d	  |	d  }W d   n1 sw   Y  t|}t|}t|tjs|dk rtj
S |dkr| jdS tjddd || | }W d   n	1 sw   Y  | j}|jdkr"|j|dd}t|tjr9t|dkd|}tj
||dk < |S )a  
    Compute the sample excess kurtosis

    The statistic computed here is the adjusted Fisher-Pearson standardized
    moment coefficient G2, computed directly from the second and fourth
    central moment.

    Parameters
    ----------
    values : ndarray
    axis : int, optional
    skipna : bool, default True
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    result : float64
        Unless input is a float array, in which case use the same
        precision as the input array.

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, np.nan, 1, 3, 2])
    >>> nanops.nankurt(s.values)
    -1.2892561983471076
    r>   rv   r   Nr   r   r  r   r  r      Fr   )r   r1   r   r   r   r   r   ry   r   rD   r?   r   r   r   r   r  rx   rz   r/   r   )rC   r[   r\   r`   r   r  r  r  Z	adjusted4r  Zm4Zadj	numeratordenominatorrk   r1   r*   r*   r+   nankurt	  sX   %
 	r  c                C  sF   t | ||}|r|dur|  } d| |< | |}t|||| j|dS )a  
    Parameters
    ----------
    values : ndarray[dtype]
    axis : int, optional
    skipna : bool, default True
    min_count: int, default 0
    mask : ndarray[bool], optional
        nan-mask if known

    Returns
    -------
    Dtype
        The product of all elements on a given axis. ( NaNs are treated as 1)

    Examples
    --------
    >>> from pandas.core import nanops
    >>> s = pd.Series([1, 2, 3, np.nan])
    >>> nanops.nanprod(s.values)
    6.0
    Nr   r   )r   r   prodr   r   )rC   r[   r\   r_   r`   rk   r*   r*   r+   rs   j  s    
rs   np.ndarray | intc                 C  sr   |d u r| S |d u st | dds"|r| rdS | S | r dS | S |r*||}n||}| r7d| |< | S )Nr   F)rm   r   rD   )rk   r[   r`   r\   Zna_maskr*   r*   r+   r    s    
r  np.dtype[np.floating]&np.floating | npt.NDArray[np.floating]c                 C  sz   |du r|dur|j |  }nt| }||S |dur)|j| || }n| | }t|r6||S |j|ddS )a  
    Get the count of non-null values along an axis

    Parameters
    ----------
    values_shape : tuple of int
        shape tuple from values ndarray, used if mask is None
    mask : Optional[ndarray[bool]]
        locations in values that should be considered missing
    axis : Optional[int]
        axis to count along
    dtype : type, optional
        type to use for count

    Returns
    -------
    count : scalar or array
    NFr   )rc   r   ry   r  r/   r   r   r   )r   r`   r[   r1   nr   r*   r*   r+   r     s   


r   np.ndarray | float | NaTTypetuple[int, ...]c           	      C  s  |du r
|dkr
| S |durot | tjro|dur'|j| || | dk }n|| | dk }|d| ||d d  }t||}t|rmt| rit| rW| 	d} nt
| sb| j	ddd} tj| |< | S d| |< | S | turt|||rt| dd}t
|r|d	} | S tj} | S )
zu
    Returns
    -------
    Dtype
        The product of all elements on a given axis. ( NaNs are treated as 1)
    Nr   r   Zc16rv   Fr   r1   r?   )rx   ry   rz   r   r   Zbroadcast_torD   r   Ziscomplexobjr   r   r?   r   check_below_min_countrm   r/   )	rk   r[   r`   r   r_   Z	null_maskZbelow_countZ	new_shapeZresult_dtyper*   r*   r+   r     s4   




r   c                 C  s:   |dkr|du rt | }n|j|  }||k rdS dS )a  
    Check for the `min_count` keyword. Returns True if below `min_count` (when
    missing value should be returned from the reduction).

    Parameters
    ----------
    shape : tuple
        The shape of the values (`values.shape`).
    mask : ndarray[bool] or None
        Boolean numpy array (typically of same shape as `shape`) or None.
    min_count : int
        Keyword passed through from sum/prod call.

    Returns
    -------
    bool
    r   NTF)ry   r  rc   r   )r   r`   r_   Z	non_nullsr*   r*   r+   r!    s   r!  c                 C  sB   t | tjrtt| dk d| S t| dk r| jdS | S )Ng+=r   )rx   ry   rz   r   absr1   r/   )argr*   r*   r+   r  *  s   r  pearson)methodmin_periodsabr%  r   r&  
int | Nonec                C  s   t | t |krtd|du rd}t| t|@ }| s&| | } || }t | |k r/tjS t| } t|}t|}|| |S )z
    a, b: ndarrays
    z'Operands to nancorr must have same sizeNr   )ra   AssertionErrorr    r   ry   r?   r   get_corr_func)r'  r(  r%  r&  validr>   r*   r*   r+   nancorr2  s   
r-  )Callable[[np.ndarray, np.ndarray], float]c                   sx   | dkrddl m   fdd}|S | dkr$ddl m fdd}|S | d	kr.d
d }|S t| r4| S td|  d)NZkendallr   
kendalltauc                       | |d S Nr   r*   r'  r(  r/  r*   r+   r   X     zget_corr_func.<locals>.funcZspearman	spearmanrc                   r1  r2  r*   r3  r5  r*   r+   r   _  r4  r$  c                 S  s   t | |d S )Nr   r   )ry   Zcorrcoefr3  r*   r*   r+   r   e  s   zUnknown method 'z@', expected one of 'kendall', 'spearman', 'pearson', or callable)Zscipy.statsr0  r6  callablerH   )r%  r   r*   )r0  r6  r+   r+  R  s    
r+  )r&  r   c                C  s   t | t |krtd|d u rd}t| t|@ }| s&| | } || }t | |k r/tjS t| } t|}tj| ||dd S )Nz&Operands to nancov must have same sizer   r   r7  )ra   r*  r    r   ry   r?   r   Zcov)r'  r(  r&  r   r,  r*   r*   r+   nancovr  s   r9  c                 C  sf  t | tjri| jjdv r| tj} | S | jtkrgt	| }|dv r*t
d|  dz| tj} W n) t
tfy[   z
| tj} W Y | S  tyZ } z	t
d|  d|d }~ww w tt| sg| j} | S t| st| st| st | trt
d|  dzt| } W | S  t
tfy   zt| } W Y | S  ty } z	t
d|  d|d }~ww w | S )Nr   r   zCould not convert r   zCould not convert string 'z' to numeric)rx   ry   rz   r1   r   r   r   ru   r
   r   rG   Z
complex128rH   rD   imagrealr   r   r   rq   r   complex)r   r   r   r*   r*   r+   r     sL   



r   r   c             	   C  s   t jdt jft jjt j t jft jdt jft jjt jt jfi| \}}| jj	dvs+J |rPt
| jjt jt jfsP|  }t|}|||< ||dd}|||< |S || dd}|S )a  
    Cumulative function with skipna support.

    Parameters
    ----------
    values : np.ndarray or ExtensionArray
    accum_func : {np.cumprod, np.maximum.accumulate, np.cumsum, np.minimum.accumulate}
    skipna : bool

    Returns
    -------
    np.ndarray or ExtensionArray
    g      ?g        r   r   r   )ry   Zcumprodr?   maximum
accumulater   Zcumsumminimumr1   r   r;   r/   r   Zbool_r   r   )rC   Z
accum_funcr\   Zmask_aZmask_bvalsr`   rk   r*   r*   r+   na_accum_func  s"   rA  )T)r#   r$   r%   r&   )r1   r   rX   rq   r%   r$   rS   )NN)r1   r   r}   r~   )rC   r]   r\   r$   r`   r   r%   r   )NNN)rC   r]   r\   r$   r}   r   r   r   r`   r   r%   r   )r1   r   r%   r   )r1   r   r%   r$   r'   )r1   r   )r   r   r%   r   )rC   r]   r[   r^   r%   r   )
rC   r]   r[   r^   r\   r$   r`   r   r%   r$   )rC   r]   r[   r^   r\   r$   r_   r   r`   r   r%   r   )
rk   r   r[   r^   r`   r   r   r]   r%   r   )
rC   r]   r[   r^   r\   r$   r`   r   r%   r   )r[   r^   r\   r$   )r   r   r[   r   r%   r]   )r   r   r`   r   r[   r^   r   r   r1   r   r%   r   )r[   r^   r\   r$   r   r   )rC   r]   r[   r^   r\   r$   r   r   )rC   r]   r[   r^   r\   r$   r   r   r`   r   r%   r   )
rC   r]   r[   r^   r\   r$   r`   r   r%   r  )
rk   r]   r[   r^   r`   r   r\   r$   r%   r  )
r   r   r`   r   r[   r^   r1   r  r%   r  )r   )rk   r  r[   r^   r`   r   r   r   r_   r   r%   r  )r   r   r`   r   r_   r   r%   r$   )
r'  r]   r(  r]   r%  r   r&  r)  r%   r   )r%  r   r%   r.  )
r'  r]   r(  r]   r&  r)  r   r)  r%   r   )rC   r   r\   r$   r%   r   )]
__future__r   rP   rA   typingr   r   r   r   numpyry   Zpandas._configr   Zpandas._libsr   r   r	   r
   Zpandas._typingr   r   r   r   r   r   r   r   r   Zpandas.compat._optionalr   Zpandas.util._exceptionsr   Zpandas.core.dtypes.commonr   r   r   r   r   r   r   r   Zpandas.core.dtypes.missingr   r   r    rn   r(   r)   r,   r-   rW   rf   rh   r   r   r   r   r   r   r   re   r   r   r   rr   r   rt   r   r   r1   r   r   r   r   r   r  ZnanminZnanmaxr  r
  r  r  rs   r  r   r   r!  r  r-  r+  r9  r   rA  r*   r*   r*   r+   <module>   s   ,(

8

/
G

)
"
%@=
-?
b
2-I41.V_
+
.
0
 $