o
    ZhB                     @  s  U d Z ddlmZ ddlZddlmZmZ ddlmZm	Z	m
Z
mZmZmZmZ ddlmZmZ ddlmZmZmZ ddlmZ d	d
lmZ d	dlmZmZ d	dlmZ ejdTi ej ddiG dd dZ!ejdTi ej ddiG dd dZ"erdZ#de$d< dZ%de$d< 	 dZ&de$d< 	 dZ'de$d< 	 ede%dZ(ede&dZ)edddd dUd.d/Z*eddddd0dVd3d/Z*d4ed5dd0dWd8d/Z*eree
ege
f Z+de$d9< 	 ee
ge
f Z,de$d:< 	 d;Z-de$d<< 	 ee
eege
f Z.de$d=< 	 ee
ege
f Z/de$d>< 	 d?Z0de$d@< 	 dAZ1de$dB< edCe-dZ2edDe0dZ3edXdFdGZ4ed5ddHdYdJdGZ4edd5ddKdZdMdGZ4	d[d4d5edKd\dPdGZ4edQZ5erXe	e5df Z6dS ejdTi ej G dRdS dSZ6dS )]zEThis module contains related classes and functions for serialization.    )annotationsN)partialpartialmethod)TYPE_CHECKING	AnnotatedAnyCallableLiteralTypeVaroverload)PydanticUndefinedcore_schema)SerializationInfoSerializerFunctionWrapHandlerWhenUsed)	TypeAlias   )PydanticUndefinedAnnotation)_decorators_internal_dataclass)GetCoreSchemaHandlerfrozenTc                   @  <   e Zd ZU dZded< eZded< dZded< dddZdS )PlainSerializera  Plain serializers use a function to modify the output of serialization.

    This is particularly helpful when you want to customize the serialization for annotated types.
    Consider an input of `list`, which will be serialized into a space-delimited string.

    ```python
    from typing import Annotated

    from pydantic import BaseModel, PlainSerializer

    CustomStr = Annotated[
        list, PlainSerializer(lambda x: ' '.join(x), return_type=str)
    ]

    class StudentModel(BaseModel):
        courses: CustomStr

    student = StudentModel(courses=['Math', 'Chemistry', 'English'])
    print(student.model_dump())
    #> {'courses': 'Math Chemistry English'}
    ```

    Attributes:
        func: The serializer function.
        return_type: The return type for the function. If omitted it will be inferred from the type annotation.
        when_used: Determines when this serializer should be used. Accepts a string with values `'always'`,
            `'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'.
    zcore_schema.SerializerFunctionfuncr   return_typealwaysr   	when_usedsource_typehandlerr   returncore_schema.CoreSchemac              
   C     ||}| j tur| j }n ztj| j| jd}W n ty, } zt	||d}~ww |tu r3dn|
|}tj| jt| jd|| jd|d< |S )zGets the Pydantic core schema.

        Args:
            source_type: The source type.
            handler: The `GetCoreSchemaHandler` instance.

        Returns:
            The Pydantic core schema.
        localnsNplainfunctionZinfo_argreturn_schemar   serialization)r   r   r   get_callable_return_typer   _get_types_namespacelocals	NameErrorr   from_name_errorgenerate_schemar   Z$plain_serializer_function_ser_schemainspect_annotated_serializerr   selfr   r   schemar   er(    r5   V/var/www/html/lang_env/lib/python3.10/site-packages/pydantic/functional_serializers.py__get_pydantic_core_schema__5   (   



z,PlainSerializer.__get_pydantic_core_schema__Nr   r   r   r   r    r!   	__name__
__module____qualname____doc____annotations__r   r   r   r7   r5   r5   r5   r6   r      s   
 r   c                   @  r   )WrapSerializera  Wrap serializers receive the raw inputs along with a handler function that applies the standard serialization
    logic, and can modify the resulting value before returning it as the final output of serialization.

    For example, here's a scenario in which a wrap serializer transforms timezones to UTC **and** utilizes the existing `datetime` serialization logic.

    ```python
    from datetime import datetime, timezone
    from typing import Annotated, Any

    from pydantic import BaseModel, WrapSerializer

    class EventDatetime(BaseModel):
        start: datetime
        end: datetime

    def convert_to_utc(value: Any, handler, info) -> dict[str, datetime]:
        # Note that `handler` can actually help serialize the `value` for
        # further custom serialization in case it's a subclass.
        partial_result = handler(value, info)
        if info.mode == 'json':
            return {
                k: datetime.fromisoformat(v).astimezone(timezone.utc)
                for k, v in partial_result.items()
            }
        return {k: v.astimezone(timezone.utc) for k, v in partial_result.items()}

    UTCEventDatetime = Annotated[EventDatetime, WrapSerializer(convert_to_utc)]

    class EventModel(BaseModel):
        event_datetime: UTCEventDatetime

    dt = EventDatetime(
        start='2024-01-01T07:00:00-08:00', end='2024-01-03T20:00:00+06:00'
    )
    event = EventModel(event_datetime=dt)
    print(event.model_dump())
    '''
    {
        'event_datetime': {
            'start': datetime.datetime(
                2024, 1, 1, 15, 0, tzinfo=datetime.timezone.utc
            ),
            'end': datetime.datetime(
                2024, 1, 3, 14, 0, tzinfo=datetime.timezone.utc
            ),
        }
    }
    '''

    print(event.model_dump_json())
    '''
    {"event_datetime":{"start":"2024-01-01T15:00:00Z","end":"2024-01-03T14:00:00Z"}}
    '''
    ```

    Attributes:
        func: The serializer function to be wrapped.
        return_type: The return type for the function. If omitted it will be inferred from the type annotation.
        when_used: Determines when this serializer should be used. Accepts a string with values `'always'`,
            `'unless-none'`, `'json'`, and `'json-unless-none'`. Defaults to 'always'.
    z"core_schema.WrapSerializerFunctionr   r   r   r   r   r   r   r   r   r    r!   c              
   C  r"   )zThis method is used to get the Pydantic core schema of the class.

        Args:
            source_type: Source type.
            handler: Core schema handler.

        Returns:
            The generated core schema of the class.
        r#   Nwrapr&   r)   )r   r   r   r*   r   r+   r,   r-   r   r.   r/   r   #wrap_serializer_function_ser_schemar0   r   r1   r5   r5   r6   r7      r8   z+WrapSerializer.__get_pydantic_core_schema__Nr9   r:   r5   r5   r5   r6   r@   X   s   
 >r@   z!partial[Any] | partialmethod[Any]r   _Partialz)core_schema.SerializerFunction | _PartialFieldPlainSerializerz-core_schema.WrapSerializerFunction | _PartialFieldWrapSerializerz*FieldPlainSerializer | FieldWrapSerializerFieldSerializer_FieldPlainSerializerT)bound_FieldWrapSerializerT.)r   r   check_fieldsfieldstrfieldsmodeLiteral['wrap']r   r   r   r   rJ   bool | Noner    8Callable[[_FieldWrapSerializerT], _FieldWrapSerializerT]c               G     d S Nr5   rK   rN   r   r   rJ   rM   r5   r5   r6   field_serializer      	rU   )rN   r   r   rJ   Literal['plain']:Callable[[_FieldPlainSerializerT], _FieldPlainSerializerT]c               G  rR   rS   r5   rT   r5   r5   r6   rU      rV   r%   r   Literal['plain', 'wrap']uCallable[[_FieldWrapSerializerT], _FieldWrapSerializerT] | Callable[[_FieldPlainSerializerT], _FieldPlainSerializerT]c                   s   d fdd}|S )	a  Decorator that enables custom field serialization.

    In the below example, a field of type `set` is used to mitigate duplication. A `field_serializer` is used to serialize the data as a sorted list.

    ```python
    from typing import Set

    from pydantic import BaseModel, field_serializer

    class StudentModel(BaseModel):
        name: str = 'Jane'
        courses: Set[str]

        @field_serializer('courses', when_used='json')
        def serialize_courses_in_order(self, courses: Set[str]):
            return sorted(courses)

    student = StudentModel(courses={'Math', 'Chemistry', 'English'})
    print(student.model_dump_json())
    #> {"name":"Jane","courses":["Chemistry","English","Math"]}
    ```

    See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information.

    Four signatures are supported:

    - `(self, value: Any, info: FieldSerializationInfo)`
    - `(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)`
    - `(value: Any, info: SerializationInfo)`
    - `(value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)`

    Args:
        fields: Which field(s) the method should be called on.
        mode: The serialization mode.

            - `plain` means the function will be called instead of the default serialization logic,
            - `wrap` means the function will be called with an argument to optionally call the
               default serialization logic.
        return_type: Optional return type for the function, if omitted it will be inferred from the type annotation.
        when_used: Determines the serializer will be used for serialization.
        check_fields: Whether to check that the fields actually exist on the model.

    Returns:
        The decorator function.
    frF   r    (_decorators.PydanticDescriptorProxy[Any]c                   s    t j d}t | |S )N)rM   rN   r   r   rJ   )r   ZFieldSerializerDecoratorInfoPydanticDescriptorProxyr[   Zdec_inforJ   rM   rN   r   r   r5   r6   dec  s   zfield_serializer.<locals>.decN)r[   rF   r    r\   r5   )rN   r   r   rJ   rM   r`   r5   r_   r6   rU      s   8
ModelPlainSerializerWithInfoModelPlainSerializerWithoutInfoz>ModelPlainSerializerWithInfo | ModelPlainSerializerWithoutInfoModelPlainSerializerModelWrapSerializerWithInfoModelWrapSerializerWithoutInfoz<ModelWrapSerializerWithInfo | ModelWrapSerializerWithoutInfoModelWrapSerializerz*ModelPlainSerializer | ModelWrapSerializerModelSerializer_ModelPlainSerializerT_ModelWrapSerializerTr[   c                C  rR   rS   r5   )r[   r5   r5   r6   model_serializerG  s   rj   )r   r   8Callable[[_ModelWrapSerializerT], _ModelWrapSerializerT]c                 C  rR   rS   r5   rN   r   r   r5   r5   r6   rj   K  s   rl   :Callable[[_ModelPlainSerializerT], _ModelPlainSerializerT]c                 C  rR   rS   r5   rl   r5   r5   r6   rj   Q  s   5_ModelPlainSerializerT | _ModelWrapSerializerT | None_ModelPlainSerializerT | Callable[[_ModelWrapSerializerT], _ModelWrapSerializerT] | Callable[[_ModelPlainSerializerT], _ModelPlainSerializerT]c                 s&   d fdd}| du r|S || S )	a#  Decorator that enables custom model serialization.

    This is useful when a model need to be serialized in a customized manner, allowing for flexibility beyond just specific fields.

    An example would be to serialize temperature to the same temperature scale, such as degrees Celsius.

    ```python
    from typing import Literal

    from pydantic import BaseModel, model_serializer

    class TemperatureModel(BaseModel):
        unit: Literal['C', 'F']
        value: int

        @model_serializer()
        def serialize_model(self):
            if self.unit == 'F':
                return {'unit': 'C', 'value': int((self.value - 32) / 1.8)}
            return {'unit': self.unit, 'value': self.value}

    temperature = TemperatureModel(unit='F', value=212)
    print(temperature.model_dump())
    #> {'unit': 'C', 'value': 100}
    ```

    Two signatures are supported for `mode='plain'`, which is the default:

    - `(self)`
    - `(self, info: SerializationInfo)`

    And two other signatures for `mode='wrap'`:

    - `(self, nxt: SerializerFunctionWrapHandler)`
    - `(self, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)`

        See [Custom serializers](../concepts/serialization.md#custom-serializers) for more information.

    Args:
        f: The function to be decorated.
        mode: The serialization mode.

            - `'plain'` means the function will be called instead of the default serialization logic
            - `'wrap'` means the function will be called with an argument to optionally call the default
                serialization logic.
        when_used: Determines when this serializer should be used.
        return_type: The return type for the function. If omitted it will be inferred from the type annotation.

    Returns:
        The decorator function.
    r[   rg   r    r\   c                   s   t j d}t | |S )NrN   r   r   )r   ZModelSerializerDecoratorInfor]   r^   rp   r5   r6   r`     s   zmodel_serializer.<locals>.decN)r[   rg   r    r\   r5   )r[   rN   r   r   r`   r5   rp   r6   rj   Z  s   @AnyTypec                   @  s&   e Zd ZdddZdd
dZejZdS )SerializeAsAnyitemr   r    c                 C  s   t |t f S rS   )r   rr   )clsrs   r5   r5   r6   __class_getitem__  s   z SerializeAsAny.__class_getitem__r   r   r   r!   c                 C  sR   ||}|}|d dkr|  }|d }|d dkstjdd t d|d< |S )NtypeZdefinitionsr3   c                 S  s   || S rS   r5   )xhr5   r5   r6   <lambda>  s    z=SerializeAsAny.__get_pydantic_core_schema__.<locals>.<lambda>)r3   r)   )copyr   rB   Z
any_schema)r2   r   r   r3   Zschema_to_updater5   r5   r6   r7     s   
z+SerializeAsAny.__get_pydantic_core_schema__N)rs   r   r    r   r9   )r;   r<   r=   ru   r7   object__hash__r5   r5   r5   r6   rr     s    


rr   r5   )rK   rL   rM   rL   rN   rO   r   r   r   r   rJ   rP   r    rQ   )rK   rL   rM   rL   rN   rW   r   r   r   r   rJ   rP   r    rX   )rM   rL   rN   rY   r   r   r   r   rJ   rP   r    rZ   )r[   rh   r    rh   )rN   rO   r   r   r   r   r    rk   )rN   rW   r   r   r   r   r    rm   rS   )
r[   rn   rN   rY   r   r   r   r   r    ro   )7r>   
__future__r   dataclasses	functoolsr   r   typingr   r   r   r   r	   r
   r   Zpydantic_corer   r   Zpydantic_core.core_schemar   r   r   typing_extensionsr    r   	_internalr   r   Zannotated_handlersr   	dataclassZ
slots_truer   r@   rC   r?   rD   rE   rF   rG   rI   rU   ra   rb   rc   rd   re   rf   rg   rh   ri   rj   rq   rr   r5   r5   r5   r6   <module>   s    $EfE	J